ترغب بنشر مسار تعليمي؟ اضغط هنا

B-Reconstruction Methods via Geometro-Kinematic Constraints (I)

43   0   0.0 ( 0 )
 نشر من قبل Antonela Dima
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Decay channels with attractive branching ratios, or interesting physics, are recovered by substituting missing particles (nu, pi0, etc) with combined geometric and kinematic constraints. The Sliding Vertex method is shown in this part-I, for reconstructing strongly boosted B0s decays - at the LHC.

قيم البحث

اقرأ أيضاً

For the past year, the HEP.TrkX project has been investigating machine learning solutions to LHC particle track reconstruction problems. A variety of models were studied that drew inspiration from computer vision applications and operated on an image -like representation of tracking detector data. While these approaches have shown some promise, image-based methods face challenges in scaling up to realistic HL-LHC data due to high dimensionality and sparsity. In contrast, models that can operate on the spacepoint representation of track measurements (hits) can exploit the structure of the data to solve tasks efficiently. In this paper we will show two sets of new deep learning models for reconstructing tracks using space-point data arranged as sequences or connected graphs. In the first set of models, Recurrent Neural Networks (RNNs) are used to extrapolate, build, and evaluate track candidates akin to Kalman Filter algorithms. Such models can express their own uncertainty when trained with an appropriate likelihood loss function. The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification. These models read a graph of connected hits and compute features on the nodes and edges. They adaptively learn which hit connections are important and which are spurious. The models are scaleable with simple architecture and relatively few parameters. Results for all models will be presented on ACTS generic detector simulated data.
To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection cap abilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two muon-neutrino disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with a ~10% accuracy to avoid a significant bias in the extracted oscillation parameters. On the other hand, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.
We clarify the relation between the variable MT2 and the method of kinematic constraints, both of which can be used for mass determination in events with two missing (dark matter) particles at hadron colliders. We identify a set of minimal kinematic constraints, including the mass shell conditions for the missing particles and their mother particles, as well as the constraint from the measured missing transverse momentum. We show that MT2 is the boundary of the mass region consistent with the minimal constraints. From this point of view, we also obtained a more efficient algorithm for calculating MT2. When more constraints are available in the events, we can develop more sophisticated mass determination methods starting from the MT2 constraint. In particular, we discuss cases when each decay chain contains two visible particles.
We report on the reconstruction of various charmless $B$ decays from electron-positron collisions at the energy corresponding to the $Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use simulation to devise o ptimized event selections and apply them to the full data set collected in 2019, corresponding to 8.7,fb$^{-1}$ of integrated luminosity. We fit the difference between half of the collision energy and the $B$ candidate energy (in the $Upsilon(4S)$ frame) for events restricted to a signal-rich range in beam-energy-constrained mass to search for charmless signals. Signal yields of approximately 80, 15, 20, 30, 90, and 160 decays are reconstructed for the channels $B^0 to K^+pi^-$, $B^0 to pi^+pi^-$, $B^+ to K^0_S(to pi^+pi^-)pi^+$, $B^+ to K^+pi^0(to gammagamma)$, $B^+ to K^+K^-K^+$, and $B^+ to K^+pi^-pi^+$, respectively. Yields and background contaminations are compatible with those expected from simulation and comparable with those obtained by the Belle experiment. The results show a good understanding of the detector performance and offer a reliable basis to assess projections for future reach.
81 - R. Vogt 2019
Background: The LHCb Collaboration has studied a number of kinematic correlations between $B$-hadron pairs through their subsequent decays to $J/psi$ pairs at 7 and 8 TeV for four minimum values of the $J/psi$ $p_T$. Purpose: In this work, these meas urements are compared to calculations of $b bar b$ pairs and their hadronization and inclusive decays to $J/psi J/psi$ are compared to the same observables. Potential cold matter effects on the $b bar b$ pair observables are discussed to determine which are most likely to provide insights about the system and why. Methods: The calculations, employing the exclusive HVQMNR code, assume the same intrinsic $k_T$-broadening and fragmentation as in [R. Vogt, Phys. Rev. C {bf 98} (2018) 034907]. The pair distributions presented by LHCb are calculated in this approach, both for the parent $b bar b$ and the $J/psi J/psi$ pairs produced in their decay. The sensitivity of the results to the intrinsic $k_T$ broadening is shown. The theoretical uncertainties due to the $b$ quark mass and scale variations on both the initial $b bar b$ pairs and the resulting $J/psi$ pairs are also shown. Possible effects due to the presence of the nucleus are studied by increasing the size of the $k_T$ broadening and modification of the fragmentation parameter. Results: Good agreement with the LHCb data is found for all observables. The parent $b bar b$ distributions are more sensitive to the $k_T$ broadening than are the final-state $J/psi$ pairs. Conclusions: Next-to-leading order calculations with $k_T$ broadening, as in [R. Vogt, Phys. Rev. C {bf 98} (2018) 034907], can describe all correlated observables. Multiple measurements of correlated observables are sensitive to different nuclear effects which can help distinguish between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا