ﻻ يوجد ملخص باللغة العربية
Background: The LHCb Collaboration has studied a number of kinematic correlations between $B$-hadron pairs through their subsequent decays to $J/psi$ pairs at 7 and 8 TeV for four minimum values of the $J/psi$ $p_T$. Purpose: In this work, these measurements are compared to calculations of $b bar b$ pairs and their hadronization and inclusive decays to $J/psi J/psi$ are compared to the same observables. Potential cold matter effects on the $b bar b$ pair observables are discussed to determine which are most likely to provide insights about the system and why. Methods: The calculations, employing the exclusive HVQMNR code, assume the same intrinsic $k_T$-broadening and fragmentation as in [R. Vogt, Phys. Rev. C {bf 98} (2018) 034907]. The pair distributions presented by LHCb are calculated in this approach, both for the parent $b bar b$ and the $J/psi J/psi$ pairs produced in their decay. The sensitivity of the results to the intrinsic $k_T$ broadening is shown. The theoretical uncertainties due to the $b$ quark mass and scale variations on both the initial $b bar b$ pairs and the resulting $J/psi$ pairs are also shown. Possible effects due to the presence of the nucleus are studied by increasing the size of the $k_T$ broadening and modification of the fragmentation parameter. Results: Good agreement with the LHCb data is found for all observables. The parent $b bar b$ distributions are more sensitive to the $k_T$ broadening than are the final-state $J/psi$ pairs. Conclusions: Next-to-leading order calculations with $k_T$ broadening, as in [R. Vogt, Phys. Rev. C {bf 98} (2018) 034907], can describe all correlated observables. Multiple measurements of correlated observables are sensitive to different nuclear effects which can help distinguish between them.
In this work, we preform a systematic investigation about hidden heavy and doubly heavy molecular states from the $D^{(*)}bar{D}^{(*)}/B^{(*)}bar{B}^{(*)}$ and $D^{(*)}D^{(*)}/bar{B}^{(*)}bar{B}^{(*)}$ interactions in the quasipotential Bethe-Salpete
We perform a quantitative analysis of the $bbbar{b}bar{b}$ tetraquark decays into hidden- and open-bottom mesons and calculate, for the first time, the $bbbar{b}bar{b}$ tetraquark total decay width. On the basis of our results, we propose the $bbbar{
Background: It has been proposed that the azimuthal distributions of heavy flavor quark-antiquark pairs may be modified in the medium of a heavy-ion collision. Purpose: This work tests this proposition through next-to-leading order (NLO) calculations
We compute the mass-spectra of all bottom tetraquarks [$bb][bar{b}bar{b}$] and heavy-light bottom tetraquarks [$bq][bar{b}bar{q}$] (q=u,d), that are considered to be compact and made up of diquark-antidiquark pairs. The fully bottom tetraquark [$bb][
We have evaluated the decay modes of the $Upsilon(4s), Upsilon(3d), Upsilon(5s), Upsilon(6s)$ states into $Bbar B, Bbar B^*+c.c., B^* bar B^*, B_s bar B_s, B_s bar B^*_s +c.c., B^*_s bar B_s^* $ using the $^3P_0$ model to hadronize the $bbar b$ vecto