ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmless $B$ decay reconstruction in 2019 Belle II data

78   0   0.0 ( 0 )
 نشر من قبل Diego Tonelli
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the reconstruction of various charmless $B$ decays from electron-positron collisions at the energy corresponding to the $Upsilon(4S)$ resonance collected with the Belle II detector at the SuperKEKB collider. We use simulation to devise optimized event selections and apply them to the full data set collected in 2019, corresponding to 8.7,fb$^{-1}$ of integrated luminosity. We fit the difference between half of the collision energy and the $B$ candidate energy (in the $Upsilon(4S)$ frame) for events restricted to a signal-rich range in beam-energy-constrained mass to search for charmless signals. Signal yields of approximately 80, 15, 20, 30, 90, and 160 decays are reconstructed for the channels $B^0 to K^+pi^-$, $B^0 to pi^+pi^-$, $B^+ to K^0_S(to pi^+pi^-)pi^+$, $B^+ to K^+pi^0(to gammagamma)$, $B^+ to K^+K^-K^+$, and $B^+ to K^+pi^-pi^+$, respectively. Yields and background contaminations are compatible with those expected from simulation and comparable with those obtained by the Belle experiment. The results show a good understanding of the detector performance and offer a reliable basis to assess projections for future reach.

قيم البحث

اقرأ أيضاً

We report on preliminary measurements of branching fractions, charge-parity-violating asymmetries, and longitudinal polarization fractions in charmless bottom-meson decays from the Belle~II experiment. We use samples of electron-positron collisions c ollected in 2019 and 2020 at the $Upsilon(4S)$ resonance, corresponding to integrated luminosities of up to 62.8 ${rm fb^{-1}}$. The results are compatible with known values, indicating good understanding of early detector performance.
We report on first measurements of branching fractions~($mathcal{B}$) and CP-violating charge asymmetries~($mathcal{A}$) in charmless $B$ decays at Belle~II. We use a sample of electron-positron collisions collected in 2019 and 2020 at the $Upsilon(4 S)$ resonance and corresponding to $34.6$,fb$^{-1}$ of integrated luminosity. We use simulation to determine optimized event selections. The $Delta E$ distributions of the resulting samples, restricted in $M_{rm bc}$, are fit to determine signal yields. Signal yields are corrected for efficiencies determined from simulation and control data samples to obtain branching fractions and CP-violating asymmetries for flavour-specific channels. These are the first measurements in charmless decays reported by Belle~II. Results are compatible with known determinations and show detector performance comparable with the best Belle results offering a reliable basis to assess projections for future reach.
74 - Markus Tobias Prim 2019
The Belle II experiment at the SuperKEKB energy-asymmetric $e^+e^-$ collider is a substantial upgrade of the B factory facility at the Japanese KEK laboratory. The design luminosity of the machine is $8times10^{35}, mathrm{cm}^{-2}mathrm{s}^{-1}$ and the Belle II experiment aims to record $50, mathrm{ab}^{-1}$ of data, a factor of 50 more than its predecessor. From February to July 2018, SuperKEKB has completed a commissioning run, achieved a peak luminosity of $5.5 times 10^{33}, mathrm{cm}^{-2}mathrm{s}^{-1}$, and Belle II recorded a data sample of about $0.5, mathrm{fb}^{-1}$. In this presentation we show first results from studying missing energy signatures, such as leptonic and semileptonic B meson decays based on this early Belle II data. We report first studies on re-measuring important standard candle processes, such as the abundant inclusive $Brightarrow X l u$ and $Bto D^*ell u$ decays, and evaluate the performance of machine learning-based tagging algorithms. Furthermore, we also present an overview of the semileptonic B decays that will be measured in the upcoming years at Belle II and discuss prospects for important B-anomalies like R$(D)$ and R$(D^*)$, as well as other tests of lepton flavor universality.
We report on the first calibration of the standard Belle II $B$-flavor tagger using the full data set collected at the $Upsilon(4{rm S})$ resonance in 2019 with the Belle II detector at the SuperKEKB collider, corresponding to 8.7 fb$^{-1}$ of integr ated luminosity. The calibration is performed by reconstructing various hadronic charmed $B$-meson decays with flavor-specific final states. We use simulation to optimize our event selection criteria and to train the flavor tagging algorithm. We determine the tagging efficiency and the fraction of wrongly identified tag-side $B$~candidates from a measurement of the time-integrated $B^0-overline{B}^0$ mixing probability. The total effective efficiency is measured to be $varepsilon_{rm eff} = big(33.8 pm 3.6(text{stat}) pm 1.6(text{sys})big)%$, which is in good agreement with the predictions from simulation and comparable with the best one obtained by the Belle experiment. The results show a good understanding of the detector performance and offer a basis for future calibrations.
We report the first reconstruction of the $B^{0} to pi^{0} pi^{0}$ decay mode at Belle II using samples of 2019 and 2020 data that correspond to 62.8 fb$^{-1}$ of integrated luminosity. We find $14.0^{+6.8}_{-5.6}$ signal decays, corresponding to a s ignificance of 3.4 standard deviations and determine a branching ratio of $mathcal{B}(B^{0} rightarrow pi^{0} pi^{0}) = [0.98^{+0.48}_{-0.39} pm 0.27] times 10^{-6}$. The results agree with previous determinations and contribute important information to an early assessment of detector performance and Belle IIs potential for future determinations of $alpha/phi_2$ using $B rightarrow pi pi$ modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا