ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Kinematic Constraints and MT2

460   0   0.0 ( 0 )
 نشر من قبل Zhenyu Han
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We clarify the relation between the variable MT2 and the method of kinematic constraints, both of which can be used for mass determination in events with two missing (dark matter) particles at hadron colliders. We identify a set of minimal kinematic constraints, including the mass shell conditions for the missing particles and their mother particles, as well as the constraint from the measured missing transverse momentum. We show that MT2 is the boundary of the mass region consistent with the minimal constraints. From this point of view, we also obtained a more efficient algorithm for calculating MT2. When more constraints are available in the events, we can develop more sophisticated mass determination methods starting from the MT2 constraint. In particular, we discuss cases when each decay chain contains two visible particles.



قيم البحث

اقرأ أيضاً

We re-examine the kinematic variable m_T2 and its relatives in the light of recent work by Cheng and Han. Their proof that m_T2 admits an equivalent, but implicit, definition as the `boundary of the region of parent and daughter masses that is kinema tically consistent with the event hypothesis is far-reaching in its consequences. We generalize their result both to simpler cases (m_T, the transverse mass) and to more complex cases (m_TGen). We further note that it is possible to re-cast many existing and unpleasant proofs (e.g. those relating to the existence or properties of kink and crease structures in m_T2) into almost trivial forms by using the alternative definition. Not only does this allow us to gain better understanding of those existing results, but it also allows us to write down new (and more or less explicit) definitions of (a) the variable that naturally generalizes m_T2 to the case in which the parent or daughter particles are not identical, and (b) the inverses of m_T and m_T2 -- which may be useful if daughter masses are known and bounds on parent masses are required. We note the implications that these results may have for future matrix-element likelihood techniques.
Most SUSY searches at the LHC are optimised for the MSSM, where gauginos are Majorana particles. By introducing Dirac gauginos, we obtain an enriched phenomenology, from which considerable differences in the LHC signatures and limits are expected as compared to the MSSM. Concretely, in the minimal Dirac gaugino model (MDGSSM) we have six neutralino and three chargino states. Moreover, production cross sections are enhanced for gluinos, while for squarks they are suppressed. In this contribution, we explore the consequences of the current LHC limits on gluinos and squarks in this model.
59 - A. Dima , M. Dima 2008
Decay channels with attractive branching ratios, or interesting physics, are recovered by substituting missing particles (nu, pi0, etc) with combined geometric and kinematic constraints. The Sliding Vertex method is shown in this part-I, for reconstructing strongly boosted B0s decays - at the LHC.
Reconstructed mass variables, such as $M_2$, $M_{2C}$, $M_T^star$, and $M_{T2}^W$, play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large param eter space, which is numerically challenging. We provide a C++ code, OPTIMASS, which interfaces with the MINUIT library to perform this constrained minimization using the Augmented Lagrangian Method. The code can be applied to arbitrarily general event topologies and thus allows the user to significantly extend the existing set of kinematic variables. We describe this code and its physics motivation, and demonstrate its use in the analysis of the fully leptonic decay of pair-produced top quarks using the $M_2$ variables.
We derive upper and lower bounds on the absorption of ultraintense laser light by solids as a function of fundamental laser and plasma parameters. These limits emerge naturally from constrained optimization techniques applied to a generalization of t he laser-solid interaction as a strongly-driven, relativistic, two degree of freedom Maxwell-Vlasov system. We demonstrate that the extrema and the phase-space-averaged absorption must always increase with intensity, and increase most rapidly when $10^{18} < I_L lambda_L^2 < 10^{20}$ W $mu$m$^2/$cm$^{2}$. Our results indicate that the fundamental empirical trend towards increasing fractional absorption with irradiance therefore reflects the underlying phase space constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا