ﻻ يوجد ملخص باللغة العربية
Unique electronic properties of self-organized Au atom chains on Ge(001) in novel c(8x2) long-range order are revealed by scanning tunneling microscopy. Along the nanowires an exceptionally narrow conduction path exists which is virtually decoupled from the substrate. It is laterally confined to the ultimate limit of single atom dimension, and is strictly separated from its neighbors, as not previously reported. The resulting tunneling conductivity shows a dramatic inhomogeneity of two orders of magnitude. The atom chains thus represent an outstandingly close approach to a one-dimensional electron liquid.
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band topology of the conduction electron system by k-resolved photoemission. Two metallic electron pockets are observed. Their Fermi surface sheets form straight lines without undulatio
Atomic structures of quasi-one-dimensional (1D) character can be grown on semiconductor substrates by metal adsorption. Significant progress concerning study of their 1D character has been achieved recently by condensing noble metal atoms on the Ge(0
We present the exact Bethe Ansatz solution of a multichannel model of one- dimensional correlated electrons coupled antiferromagnetically to a magnetic impurity of arbitrary spin S. The solution reveals that interactions in the bulk make the magnetic
Among the many anticipated applications of graphene, some - such as transistors for Si microelectronics - would greatly benefit from the possibility to deposit graphene directly on a semiconductor grown on a Si wafer. We report that Ge(001) layers on
We study the one-electron spectral properties of one-dimensional interacting electron systems in which the interactions have finite range. We employ a mobile quantum impurity scheme that describes the interactions of the fractionalized excitations at