ﻻ يوجد ملخص باللغة العربية
We present the exact Bethe Ansatz solution of a multichannel model of one- dimensional correlated electrons coupled antiferromagnetically to a magnetic impurity of arbitrary spin S. The solution reveals that interactions in the bulk make the magnetic impurity drive both spin and charge fluctuations, producing a mixed valence at the impurity site, with an associated effective spin S_eff > S in the presence of a magnetic field. The screening of the impurity spin is controlled by its size independently of the number of channels, in contrast to the multichannel Kondo effect for free electrons.
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exac
We study the low-temperature thermodynamics of a spin-S magnetic impurity coupled to m degenerate bands of interacting electrons in one dimension. By exploiting boundary conformal field theory techniques, we derive exact results for the possible impu
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective
We investigate the ground-state of a p-wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability
The emerging and screening of local magnetic moments in solids has been investigated for more than 60 years. Local vacancies as in graphene or in Heavy Fermions can induce decoupled bound states that lead to the formation of local moments. In this pa