ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene Grown on Ge(001) from Atomic Source

118   0   0.0 ( 0 )
 نشر من قبل Grzegorz Lupina
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the many anticipated applications of graphene, some - such as transistors for Si microelectronics - would greatly benefit from the possibility to deposit graphene directly on a semiconductor grown on a Si wafer. We report that Ge(001) layers on Si(001) wafers can be uniformly covered with graphene at temperatures between 800{deg}C and the melting temperature of Ge. The graphene is closed, with sheet resistivity strongly decreasing with growth temperature, weakly decreasing with the amount of deposited C, and reaching down to 2 kOhm/sq. Activation energy of surface roughness is low (about 0.66 eV) and constant throughout the range of temperatures in which graphene is formed. Density functional theory calculations indicate that the major physical processes affecting the growth are: (1) substitution of Ge in surface dimers by C, (2) interaction between C clusters and Ge monomers, and (3) formation of chemical bonds between graphene edge and Ge(001), and that the processes 1 and 2 are surpassed by CH$_{2}$ surface diffusion when the C atoms are delivered from CH$_{4}$. The results of this study indicate that graphene can be produced directly at the active region of the transistor in a process compatible with the Si technology.



قيم البحث

اقرأ أيضاً

In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) surfaces. By a combined use of microRaman and x-ray photoelectron spectroscopies, and scanning tunneling microscopy and spectroscopy, we were able t o individuate a carbon precursor phase to graphene nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size regions these aggregates show a linear arrangement of atoms as well as the first signature of the hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer deposition times, when the graphene domains coalesce to form a single layer graphene film.
The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform for on-chip optical interconnects and quantum optical applications. Monolithic integration of both material systems is a long-time cha llenge, since different material properties lead to high defect densities in the epitaxial layers. In recent years, nanostructures however have shown to be suitable for successfully realising light emitters on silicon, taking advantage of their geometry. Facet edges and sidewalls can minimise or eliminate the formation of dislocations, and due to the reduced contact area, nanostructures are little affected by dislocation networks. Here we demonstrate the potential of indium phosphide quantum dots as efficient light emitters on CMOS-compatible silicon substrates, with luminescence characteristics comparable to mature devices realised on III-V substrates. For the first time, electrically driven single-photon emission on silicon is presented, meeting the wavelength range of silicon avalanche photo diodes highest detection efficiency.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
193 - J. Schaefer 2009
Atomic structures of quasi-one-dimensional (1D) character can be grown on semiconductor substrates by metal adsorption. Significant progress concerning study of their 1D character has been achieved recently by condensing noble metal atoms on the Ge(0 01) surface. In particular, Pt and Au yield high quality reconstructions with low defect densities. We reported on the self-organized growth and the long-range order achieved, and present data from scanning tunneling microscopy (STM) on the structural components. For Pt/Ge(001), we find hot substrate growth is the preferred method for self-organization. Despite various dimerized bonds, these atomic wires exhibit metallic conduction at room temperature, as documented by low-bias STM. For the recently discovered Au/Ge(001) nanowires, we have developed a deposition technique that allows complete substrate coverage. The Au nanowires are extremely well separated spatially, exhibit a continuous 1D charge density, and are of solid metallic conductance. In this review we present structural details for both types of nanowires, and discuss similarities and differences. A perspective is given for their potential to host a one-dimensional electron system. The ability to condense different noble metal nanowires demonstrates how atomic control of the structure affects the electronic properties.
Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within $10^{-9}$ in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required ac curacy has been reported, only few times, in graphene grown on SiC by sublimation of Si, under higher magnetic fields. Here, we report on a device made of graphene grown by chemical vapour deposition on SiC which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron density devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا