ﻻ يوجد ملخص باللغة العربية
We study the effect of strong correlations on the zero bias anomaly (ZBA) in disordered interacting systems. We focus on the two-dimensional extended Anderson-Hubbard model, which has both on-site and nearest-neighbor interactions on a square lattice. We use a variation of dynamical mean field theory in which the diagonal self-energy is solved self-consistently at each site on the lattice for each realization of the randomly-distributed disorder potential. Since the ZBA occurs in systems with both strong disorder and strong interactions, we use a simplified atomic-limit approximation for the diagonal inelastic self-energy that becomes exact in the large-disorder limit. The off-diagonal self-energy is treated within the Hartree-Fock approximation. The validity of these approximations is discussed in detail. We find that strong correlations have a significant effect on the ZBA at half filling, and enhance the Coulomb gap when the interaction is finite-ranged.
A simple effective model of charge ordered and (or) magnetically ordered insulators is studied. The tight binding Hamiltonian analyzed consists of (i) the effective on-site interaction U, (ii) the intersite density-density interaction W and (iii) int
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additiona
Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polariza
We compare tunneling density of states (TDOS) into two ultrathin Ag films, one uniform and one granular, for different degrees of disorder. The uniform film shows a crossover from Altshuler-Aronov (AA) zero bias anomaly to Efros Shklovskii (ES) like
We design an efficient and balanced approach that captures major effects of collective electronic fluctuations in strongly correlated fermionic systems using a simple diagrammatic expansion on a basis of dynamical mean-field theory. For this aim we p