ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transport in non-degenerate Si with a spin MOSFET structure at room temperature

120   0   0.0 ( 0 )
 نشر من قبل Masashi Shiraishi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomoyuki Sasaki




اسأل ChatGPT حول البحث

Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in non-degenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observed the modulation of the Hanle-type spin precession signals, which is a characteristic spin dynamics in non-degenerate semiconductor. We obtained long spin transport of more than 20 {mu}m and spin rotation, greater than 4{pi} at RT. We also observed gate-induced modulation of spin transport signals at RT. The modulation of spin diffusion length as a function of a gate voltage was successfully observed, which we attributed to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to make avenues to create of practical Si-based spin MOSFETs.



قيم البحث

اقرأ أيضاً

276 - K. Hamaya , Y. Ando , K. Masaki 2012
Using a metal-oxide-semiconductor field effect transistor (MOSFET) structure with a high-quality CoFe/n^+Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ~ 4.5*10^15cm^-3 at room temperature. By applying the gate voltage (V_G) to the channel, we obtain sufficient bias currents (I_Bias) for creating spin accumulation in the channel and observe clear spin-accumulation signals even at room temperature. Whereas the magnitude of the spin signals is enhanced by increasing I_Bias, it is reduced by increasing V_G interestingly. These features can be understood within the framework of the conventional spin diffusion model. As a result, a room-temperature spin injection technique for the nondegenerated Si channel without using insulating tunnel barriers is established, which indicates a technological progress for Si-based spintronic applications with gate electrodes.
111 - Ryo Ohshima 2016
A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a 2-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2 DEG consists of 3d-electrons of Ti with extraordinarily large carrier mobility, even in the insulating oxide heterostructure. To date, a wide variety of physical phenomena, such as ferromagnetism and the quantum Hall effect, have been discovered in this 2DEG systems, demonstrating the ability of the d-electron 2DEG systems to provide a material platform for the study of interesting physics. However, because of both ferromagnetism and the Rashba field, long-range spin transport and the exploitation of spintronics functions have been believed difficult to implement in the d-electron 2DEG systems. Here, we report the experimental demonstration of room-temperature spin transport in the d-electron-based 2DEG at a LaAlO3/SrTiO3 interface, where the spin relaxation length is ca. exceeding 200 nm. Our finding, which counters the conventional understandings to d-electron 2DEGs, opens a new field of d-electron spintronics. Furthermore, this work highlights a novel spin function in the conductive oxide system.
94 - Xin Chen , Duo Wang , Linyang Li 2021
Giant spin-splitting was recently predicted in collinear antiferromagnetic materials with a specific class of magnetic space group. In this work, we have predicted a two-dimensional (2D) antiferromagnetic Weyl semimetal (WS), CrO with large spin-spli t band structure, spin-momentum locked transport properties and high Neel temperature. It has two pairs of spin-polarized Weyl points at the Fermi level. By manipulating the position of the Weyl points with strain, four different antiferromagnetic spintronic states can be achieved: WSs with two spin-polarized transport channels (STCs), WSs with single STC, semiconductors with two STCs, and semiconductors with single STC. Based on these properties, a new avenue in spintronics with 2D collinear antiferromagnets is proposed.
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives rise to relativistic non-equilibrium spin phenomena highly relevant for magnetic memories and other spintronic devices. When the inversion-partner sites are occupied by the same atomic species, electrical current can generate local spin polarization with the same magnitude and opposite sign on the two inversion-partner sites. In CuMnAs, which shares this specific crystal symmetry of the Si lattice, the effect led to the demonstration of electrical switching in an antiferromagnetic memory at room temperature. When the inversion-partner sites are occupied by different atoms, a non-zero global spin-polarization is generated by the applied current which can switch a ferromagnet, as reported at low temperatures in the diluted magnetic semiconductor (Ga,Mn)As. Here we demonstrate the effect of the global current-induced spin polarization in a counterpart crystal-symmetry material NiMnSb which is a member of the broad family of magnetic Heusler compounds. It is an ordered high-temperature ferromagnetic metal whose other favorable characteristics include high spin-polarization and low damping of magnetization dynamics. Our experiments are performed on strained single-crystal epilayers of NiMnSb grown on InGaAs. By performing all-electrical ferromagnetic resonance measurements in microbars patterned along different crystal axes we detect room-temperature spin-orbit torques generated by effective fields of the Dresselhaus symmetry. The measured magnitude and symmetry of the current-induced torques are consistent with our relativistic density-functional theory calculations.
We demonsrtate electrical spin injection and detection in $n$-type Ge ($n$-Ge) at room temperature using four-terminal nonlocal spin-valve and Hanle-effect measurements in lateral spin-valve (LSV) devices with Heusler-alloy Schottky tunnel contacts. The spin diffusion length ($lambda$$_{rm Ge}$) of the Ge layer used ($n sim$ 1 $times$ 10$^{19}$ cm$^{-3}$) at 296 K is estimated to be $sim$ 0.44 $pm$ 0.02 $mu$m. Room-temperature spin signals can be observed reproducibly at the low bias voltage range ($le$ 0.7 V) for LSVs with relatively low resistance-area product ($RA$) values ($le$ 1 k$Omega$$mu$m$^{2}$). This means that the Schottky tunnel contacts used here are more suitable than ferromagnet/MgO tunnel contacts ($RA ge$ 100 k$Omega$$mu$m$^{2}$) for developing Ge spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا