ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature ballistic transport in InSb quantum well nanodevices

508   0   0.0 ( 0 )
 نشر من قبل Adam Gilbertson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the room temperature observation of significant ballistic electron transport in shallow etched four-terminal mesoscopic devices fabricated on an InSb/AlInSb quantum well (QW) heterostructure with a crucial partitioned growth-buffer scheme. Ballistic electron transport is evidenced by a negative bend resistance signature which is quite clearly observed at 295 K and at current densities in excess of 10$^{6}$ A/cm$^{2}$. This demonstrates unequivocally that by using effective growth and processing strategies, room temperature ballistic effects can be exploited in InSb/AlInSb QWs at practical device dimensions.



قيم البحث

اقرأ أيضاً

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. Three bottom gates are used to locally deplete the nanowire creating a ballistic quantum point contact with only a few conducting channel s. In a magnetic field, the Zeeman splitting of the corresponding 1D subbands is revealed by the emergence of conductance plateaus at multiples of $e^2$/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear leaving a first conductance step of 2$e^2/h$, which is indicative of a remarkable two-fold subband degeneracy that can persist up to several Tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the subband structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.
62 - S. Li , N. Kang , D. X. Fan 2016
Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-P{e}rot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics.
Quantum-well (QW) devices have been extensively investigated in semiconductor structures. More recently, spin-polarized QWs were integrated into magnetic tunnel junctions (MTJs). In this work, we demonstrate the spin-based control of the quantized st ates in iron $3d$-band QWs, as observed in experiments and theoretical calculations. We find that the magnetization rotation in the Fe QWs significantly shifts the QW quantization levels, which modulate the resonant-tunneling current in MTJs, resulting in a tunneling anisotropic magnetoresistance (TAMR) effect of QWs. This QW-TAMR effect is sizable compared to other types of TAMR effect, and it is present above the room-temperature. In a QW MTJ of Cr/Fe/MgAl$_2$O$_4$/top electrode, where the QW is formed by a mismatch between Cr and Fe in the $d$ band with $Delta_1$ symmetry, a QW-TAMR ratio of up to 5.4 % was observed at 5 K, which persisted to 1.2 % even at 380K. The magnetic control of QW transport can open new applications for spin-coupled optoelectronic devices, ultra-thin sensors, and memories.
We describe the influence of hard wall confinement and lateral dimension on the low temperature transport properties of long diffusive channels and ballistic crosses fabricated in an InSb/InxAl1-xSb heterostructure. Partially diffuse boundary scatter ing is found to play a crucial role in the electron dynamics of ballistic crosses and substantially enhance the negative bend resistance. Experimental observations are supported by simulations using a classical billiard ball model for which good agreement is found when diffuse boundary scattering is included.
Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا