ترغب بنشر مسار تعليمي؟ اضغط هنا

Viral self-assembly as a thermodynamic process

187   0   0.0 ( 0 )
 نشر من قبل Joseph Rudnick
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The protein shells, or capsids, of all sphere-like viruses adopt icosahedral symmetry. In the present paper we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins.

قيم البحث

اقرأ أيضاً

DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. I n this article we theoretically study the self-assembly of DNA-caged particles. These nanoblocks combine DNA grafted particles with more complicated purely DNA based constructs. Geometrically the nanoblock is a sphere (DNA grafted particle) inscribed inside a polyhedron (DNA cage). The faces of the DNA cage are open, and the edges are made from double stranded DNA. The cage vertices are modified DNA junctions. We calculate the equilibriuim yield of self-assembled, tetrahedrally caged particles, and discuss their stability with respect to alternative structures. The experimental feasability of the method is discussed. To conclude we indicate the usefulness of DNA-caged particles as nanoblocks in a hierarchical self-assembly strategy.
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that arise from inhomogeneous polarization charge distributions are generally neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization charges in dynamical dielectric geometries, and demonstrate that dielectric effects emph{qualitatively} alter the predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
Active systems contain self-propelled particles and can spontaneously self-organize into patterns making them attractive candidates for the self-assembly of smart soft materials. One key limitation of our present understanding of these materials hing es on the complexity of the microscopic mechanisms driving its components forward. Here, by combining experiments, analytical theory and simulations we explore such a mechanism for a class of active system, modular microswimmers, which self-assemble from colloids and ion-exchange resins on charged substrates. Our results unveil the self-assembly processes and the working mechanism of the ion-exchange driven motors underlying modular microswimmers, which have so far been illusive, even qualitatively. We apply these motors to show that modular microswimmers can circumvent corners in complex environments and move uphill. Our work closes a central knowledge gap in modular microswimmers and provides a facile route to extract mechanical energy from ion-exchange processes.
A challenge in designing self-assembling building blocks is to ensure the target state is both thermodynamically stable and kinetically accessible. These two objectives are known to be typically in competition, but it is not known how to simultaneous ly optimize them. We consider this problem through the lens of multi-objective optimization theory: we develop a genetic algorithm to compute the Pareto fronts characterizing the tradeoff between equilibrium probability and folding rate, for a model system of small polymers of colloids with tunable short-ranged interaction energies. We use a coarse-grained model for the particles dynamics that allows us to efficiently search over parameters, for systems small enough to be enumerated. For most target states there is a tradeoff when the number of types of particles is small, with medium-weak bonds favouring fast folding, and strong bonds favouring high equilibrium probability. The tradeoff disappears when the number of particle types reaches a value $m_*$, that is usually much less than the total number of particles. This general approach of computing Pareto fronts allows one to identify the minimum number of design parameters to avoid a thermodynamic-kinetic tradeoff. However, we argue, by contrasting our coarse-grained models predictions with those of Brownian dynamics simulations, that particles with short-ranged isotropic interactions should generically have a tradeoff, and avoiding it in larger systems will require orientation-dependent interactions.
The formation of a viral capsid -- the highly-ordered protein shell that surrounds the genome of a virus -- is the canonical example of self-assembly. The capsids of many positive-sense RNA viruses spontaneously assemble from in vitro mixtures of the coat protein and RNA. The high yield of proper capsids that assemble is remarkable, given their structural complexity: 180 identical proteins must arrange into three distinct local configurations to form an icosahedral capsid with a triangulation number of 3 (T = 3). Despite a wealth of data from structural studies and simulations, even the most fundamental questions about how these structures assemble remain unresolved. Experiments have not determined whether the assembly pathway involves aggregation or nucleation, or how the RNA controls the process. Here we use interferometric scattering microscopy to directly observe the in vitro assembly kinetics of individual, unlabeled capsids of bacteriophage MS2. By measuring how many coat proteins bind to individual MS2 RNA strands over time scales from 1 ms to 900 s, we find that the start of assembly is broadly distributed in time and is followed by a rapid increase in the number of bound proteins. These measurements provide strong evidence for a nucleation-and-growth pathway. We also find that malformed structures assemble when multiple nuclei appear on the same RNA before the first nucleus has finished growing. Our measurements reveal the complex assembly pathways for viral capsids around RNA in quantitative detail, including the nucleation threshold, nucleation time, growth time, and constraints on the critical nucleus size. These results may inform strategies for engineering synthetic capsids or for derailing the assembly of pathogenic viruses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا