ﻻ يوجد ملخص باللغة العربية
In recent years there have been a number of proposals to utilize the specificity of DNA based interactions for potential applications in nanoscience. One interesting direction is the self-assembly of micro- and nanoparticle clusters using DNA scaffolds. In this letter we consider a DNA scaffold method to self-assemble clusters of colored particles. Stable clusters of microspheres have recently been produced by an entirely different method. Our DNA based approach self-assembles clusters with additional degrees of freedom associated with particle permutation. We demonstrate that in the non-equilibrium regime of irreversible binding the self-assembly process is experimentally feasible. These color degrees of freedom may allow for more diverse intercluster interactions essential for hierarchical self-assembly of larger structures.
DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and complexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal crystals using DNA grafted particles. I
In recent years significant attention has been attracted to proposals which utilize DNA for nanotechnological applications. Potential applications of these ideas range from the programmable self-assembly of colloidal crystals, to biosensors and nanop
By combining analytical results and simulations of various coarse-grained models we investigate the minimal energy shape of DNA minicircles which are torsionally constrained by an imposed over or undertwist. We show that twist-bend coupling, a cross
Via computer simulations, we demonstrate how a densely grafted layer of polymers, a {it brush}, could be turned into an efficient switch through chemical modification of some of its end-monomers. In this way, a surface coating with reversibly switcha
Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually