ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Symmetry and Electron Spin Relaxation of Lithium Donors in Silicon

101   0   0.0 ( 0 )
 نشر من قبل Andre Petukhov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report theoretical and experimental studies of the longitudinal electron spin and orbital relaxation time of interstitial Li donors in $^{28}$Si. We predict that despite the near-degeneracy of the ground-state manifold the spin relaxation times are extremely long for the temperatures below 0.3 K. This prediction is based on a new finding of the chiral symmetry of the donor states, which presists in the presence of random strains and magnetic fields parallel to one of the cubic axes. Experimentally observed kinetics of magnetization reversal at 2.1 K and 4.5 K are in a very close agreement with the theory. To explain these kinetics we introduced a new mechanism of spin decoherence based on a combination of a small off-site displacement of the Li atom and an umklapp phonon process. Both these factors weakly break chiral symmetry and enable the long-term spin relaxation.



قيم البحث

اقرأ أيضاً

Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achiev e controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16${pm}1$ nm. By utilizing an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
We analyze the electron spin relaxation rate $1/T_1$ of individual ion-implanted $^{31}$P donors, in a large set of metal-oxide-semiconductor (MOS) silicon nanoscale devices, with the aim of identifying spin relaxation mechanisms peculiar to the envi ronment of the spins. The measurements are conducted at low temperatures ($Tapprox 100$~mK), as a function of external magnetic field $B_0$ and donor electrochemical potential $mu_{rm D}$. We observe a magnetic field dependence of the form $1/T_1propto B_0^5$ for $B_0gtrsim 3,$ T, corresponding to the phonon-induced relaxation typical of donors in the bulk. However, the relaxation rate varies by up to two orders of magnitude between different devices. We attribute these differences to variations in lattice strain at the location of the donor. For $B_0lesssim 3,$T, the relaxation rate changes to $1/T_1propto B_0$ for two devices. This is consistent with relaxation induced by evanescent-wave Johnson noise created by the metal structures fabricated above the donors. At such low fields, where $T_1>1,$s, we also observe and quantify the spurious increase of $1/T_1$ when the electrochemical potential of the spin excited state $|uparrowrangle$ comes in proximity to empty states in the charge reservoir, leading to spin-dependent tunneling that resets the spin to $|downarrowrangle$. These results give precious insights into the microscopic phenomena that affect spin relaxation in MOS nanoscale devices, and provide strategies for engineering spin qubits with improved spin lifetimes.
Modulation of donor electron wavefunction via electric fields is vital to quantum computing architectures based on donor spins in silicon. For practical and scalable applications, the donor-based qubits must retain sufficiently long coherence times i n any realistic experimental conditions. Here, we present pulsed electron spin resonance studies on the longitudinal $(T_1)$ and transverse $(T_2)$ relaxation times of phosphorus donors in bulk silicon with various electric field strengths up to near avalanche breakdown in high magnetic fields of about 1.2 T and low temperatures of about 8 K. We find that the $T_1$ relaxation time is significantly reduced under large electric fields due to electric current, and $T_2$ is affected as the $T_1$ process can dominate decoherence. Furthermore, we show that the magnetoresistance effect in silicon can be exploited as a means to combat the reduction in the coherence times. While qubit coherence times must be much longer than quantum gate times, electrically accelerated $T_1$ can be found useful when qubit state initialization relies on thermal equilibration.
We present easily reproducible experimental conditions giving long electron spin relaxation and dephasing times at low temperature in a quantum well. The proposed system consists in an electron localized by a donor potential, and immerged in a quantu m well in order to improve its localization with respect to donor in bulk. We have measured, by using photoinduced Faraday rotation technique, the spin relaxation and dephasing times of electrons localized on donors placed in the middle of a 80A CdTe quantum well, and we have obtained 15ns and 18ns, respectively, which are almost two orders of magnitude longer than the free electron spin relaxation and dephasing times obtained previously in a similar CdTe quantum well (J. Tribollet et al. PRB 68, 235316 (2003)).
Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon intera ction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in silicon are found to be comparable to those in gallium arsenide, however, the spin lifetimes in silicon or germanium can be tuned by reducing the valley degeneracy through strain or quantum confinement. The tunable range is limited to slightly over an order of magnitude by intravalley processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا