ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron spin relaxations of phosphorus donors in bulk silicon under large electric field

132   0   0.0 ( 0 )
 نشر من قبل Daniel Kyungdeock Park
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modulation of donor electron wavefunction via electric fields is vital to quantum computing architectures based on donor spins in silicon. For practical and scalable applications, the donor-based qubits must retain sufficiently long coherence times in any realistic experimental conditions. Here, we present pulsed electron spin resonance studies on the longitudinal $(T_1)$ and transverse $(T_2)$ relaxation times of phosphorus donors in bulk silicon with various electric field strengths up to near avalanche breakdown in high magnetic fields of about 1.2 T and low temperatures of about 8 K. We find that the $T_1$ relaxation time is significantly reduced under large electric fields due to electric current, and $T_2$ is affected as the $T_1$ process can dominate decoherence. Furthermore, we show that the magnetoresistance effect in silicon can be exploited as a means to combat the reduction in the coherence times. While qubit coherence times must be much longer than quantum gate times, electrically accelerated $T_1$ can be found useful when qubit state initialization relies on thermal equilibration.



قيم البحث

اقرأ أيضاً

The hyperfine interaction of phosphorus donors in fully strained Si thin films grown on virtual Si$_{1-x}$Ge$_x$ substrates with $xleq 0.3$ is determined via electrically detected magnetic resonance. For highly strained epilayers, hyperfine interacti ons as low as 0.8 mT are observed, significantly below the limit predicted by valley repopulation. Within a Greens function approach, density functional theory (DFT) shows that the additional reduction is caused by the volume increase of the unit cell and a local relaxation of the Si ligands of the P donor.
The electrical detection of spin echoes via echo tomography is used to observe decoherence processes associated with the electrical readout of the spin state of phosphorus donor electrons in silicon near a SiO$_2$ interface. Using the Carr-Purcell pu lse sequence, an echo decay with a time constant of $1.7pm0.2 rm{mu s}$ is observed, in good agreement with theoretical modeling of the interaction between donors and paramagnetic interface states. Electrical spin echo tomography thus can be used to study the spin dynamics in realistic spin qubit devices for quantum information processing.
Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achiev e controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16${pm}1$ nm. By utilizing an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simulta neous qubit initialization, manipulation and readout fidelities near ~99.9%. Here we characterize the phosphorus in silicon system in the regime of zero magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ~10 s Hahn echo coherence times, even at Earths magnetic field and below.
We present atomistic simulations of the D0 to D- charging energies of a gated donor in silicon as a function of applied fields and donor depths and find good agreement with experimental measure- ments. A self-consistent field large-scale tight-bindin g method is used to compute the D- binding energies with a domain of over 1.4 million atoms, taking into account the full bandstructure of the host, applied fields, and interfaces. An applied field pulls the loosely bound D- electron towards the interface and reduces the charging energy significantly below the bulk values. This enables formation of bound excited D-states in these gated donors, in contrast to bulk donors. A detailed quantitative comparison of the charging energies with transport spectroscopy measurements with multiple samples of arsenic donors in ultra-scaled FinFETs validates the model results and provides physical insights. We also report measured D-data showing for the first time the presence of bound D-excited states under applied fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا