ﻻ يوجد ملخص باللغة العربية
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical scheme to construct stationary soliton solutions, and direct simulations to test their stability, we identify a full soliton-stability range in the space of the systems parameters, including the coefficient of the group-velocity-mismatch (GVM). The soliton stability is limited by an abrupt onset of growth of tails in the SH component, the relevant stability region being defined as that in which the energy loss to the tail generation is negligible under experimentally relevant conditions. We demonstrate that the stability domain can be readily expanded with the help of two management techniques (spatially periodic compensation of destabilizing effects) - the dispersion management (DM) and GVM management. In comparison with their counterparts in optical fibers, DM solitons in the chi^(2) medium feature very weak intrinsic oscillations.
A plethora of applications have recently motivated extensive efforts on the generation of low noise Kerr solitons and coherent frequency combs in various platforms ranging from fiber to whispering gallery and integrated microscale resonators. However
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The D
Temporal cavity solitons (CS) are optical pulses that can persist in passive resonators, and they play a key role in the generation of coherent microresonator frequency combs. In resonators made of amorphous materials, such as fused silica, they can
Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of o
We consider self-trapping of topological modes governed by the one- and two-dimensional (1D and 2D) nonlinear-Schrodinger/Gross-Pitaevskii equation with effective single- and double-well (DW) nonlinear potentials induced by spatial modulation of the