ﻻ يوجد ملخص باللغة العربية
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The DM map is adopted in the form of alternating segments with anomalous and normal group-velocity dispersion. Previously, temporal DM solitons were studied in detail in single-mode fibers, and some solutions for 2D spatiotemporal light bullets, stabilized by DM, were found in the model of a planar waveguide. By means of numerical methods, we demonstrate that stability of the 3D spatiotemporal solitons is determined by the usual DM-strength parameter, $S$: they are quasi-stable at $ S<S_{0}approx 0.93$, and completely stable at $S>S_{0}$. Stable vortex solitons are constructed too. We also consider collisions between the 3D solitons, in both axial and transverse directions. The interactions are quasi-elastic, including periodic collisions between solitons which perform shuttle motion in the transverse plane.
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
We present a theoretical and numerical study of light propagation in graded-index (GRIN) multimode fibers where the core diameter has been periodically modulated along the propagation direction. The additional degree of freedom represented by the mod
We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the po
We report on the observation of various bound states of dispersion-managed (DM) solitons in a passively mode-locked Erbium-doped fiber ring laser at near zero net cavity group velocity dispersion (GVD). The generated DM solitons are characterized by