ﻻ يوجد ملخص باللغة العربية
A plethora of applications have recently motivated extensive efforts on the generation of low noise Kerr solitons and coherent frequency combs in various platforms ranging from fiber to whispering gallery and integrated microscale resonators. However, the Kerr (cubic) nonlinearity is inherently weak, and in contrast, strong quadratic nonlinearity in optical resonators is expected to provide an alternative means for soliton formation with promising potential. Here, we demonstrate the formation of a dissipative quadratic soliton via non-stationary optical parametric amplification in the presence of significant temporal walk-off between pump and signal leading to half-harmonic generation accompanied by a substantial pulse compression (exceeding a factor of 40) at low pump pulse energies ($sim$ 4 picojoules). The bright quadratic soliton forms in a low-finesse cavity in both normal and anomalous dispersion regimes, which is in stark contrast with bright Kerr solitons. We present a route to significantly improve the performance of the demonstrated quadratic soliton when extended to an integrated nonlinear platform to realize highly-efficient extreme pulse compression leading to the formation of few-cycle soliton pulses starting from ultra-low energy picosecond scale pump pulses that are widely tunable from ultra-violet to mid-infrared spectral regimes.
We predict the existence of spatial-spectral vortex solitons in one-dimensional periodic waveguide arrays with quadratic nonlinear response. In such vortices the energy flow forms a closed loop through the simultaneous effects of phase gradients at t
Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of o
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical sc
We examine a coherently-driven, dispersion-managed, passive Kerr fiber ring resonator and report the first direct experimental observation of dispersive wave emission by temporal cavity solitons. Our observations are in excellent agreement with analy
We report on the experimental observation of bunching dynamics with temporal cavity solitons in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrafast cavity solitons with random temporal separations, and o