ﻻ يوجد ملخص باللغة العربية
We consider self-trapping of topological modes governed by the one- and two-dimensional (1D and 2D) nonlinear-Schrodinger/Gross-Pitaevskii equation with effective single- and double-well (DW) nonlinear potentials induced by spatial modulation of the local strength of the self-defocusing nonlinearity. This setting, which may be implemented in optics and Bose-Einstein condensates, aims to extend previous studies, which dealt with single-well nonlinear potentials. In the 1D setting, we find several types of symmetric, asymmetric and antisymmetric states, focusing on scenarios of the spontaneous symmetry breaking. The single-well model is extended by including rocking motion of the well, which gives rise to Rabi oscillations between the fundamental and dipole modes. Analysis of the 2D single-well setting gives rise to stable modes in the form of ordinary dipoles, vortex-antivortex dipoles (VADs), and vortex triangles (VTs), which may be considered as produced by spontaneous breaking of the axial symmetry. The consideration of the DW configuration in 2D reveals diverse types of modes built of components trapped in the two wells, which may be fundamental states and vortices with topological charges m = 1 and 2, as well as VADs (with m = 0) and VTs (with m = 2).
We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transver
We introduce a one-dimensional model of a cavity with the Kerr nonlinearity and saturated gain, designed so as to keep solitons in the state of shuttle motion. The solitons are always unstable in the cavity bounded by the usual potential barriers, du
Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localised dissipative structures (solitons). Their conceptual simplicity has for several decades offere
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical sc
The stabilization of one-dimensional solitons by a nonlinear lattice against the critical collapse in the focusing quintic medium is a challenging issue. We demonstrate that this purpose can be achieved by combining a nonlinearlatticeandsaturationoft