ترغب بنشر مسار تعليمي؟ اضغط هنا

Warming in systems with discrete spectrum: spectral diffusion of two dimensional electrons in magnetic field

66   0   0.0 ( 0 )
 نشر من قبل Sergey Vitkalov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Warming in complex physical systems, in particular global warming, attracts significant contemporary interest. It is essential, therefore, to understand basic physical mechanisms leading to overheating. It is well known that application of an electric field to conductors heats electric charge carriers. Often an elevated electron temperature describes the result of the heating. This paper demonstrates that an electric field applied to a conductor with discrete electron spectrum produces a non-equilibrium electron distribution, which cannot be described by temperature. Such electron distribution changes dramatically the conductivity of highly mobile two dimensional electrons in a magnetic field, forcing them into a state with a zero differential resistance. Most importantly the results demonstrate that, in general, the effective overheating in the systems with discrete spectrum is significantly stronger than the one in systems with continuous and homogeneous distribution of the energy levels at the same input power.

قيم البحث

اقرأ أيضاً

Shubnikov de Haas resistance oscillations of highly mobile two dimensional helical electrons propagating on a conducting surface of strained HgTe 3D topological insulator are studied in magnetic fields B tilted by angle $theta$ from the normal to the conducting layer. Strong decrease of oscillation amplitude A is observed with the tilt: $A sim exp(-xi/cos(theta))$, where $xi$ is a constant. Evolution of the oscillations with temperature T shows that the parameter $xi$ contains two terms: $xi=xi_1+xi_2 T$. The temperature independent term, $xi_1$, describes reduction of electron mean free path in magnetic field B pointing toward suppression of the topological protection of the electron states against impurity scattering. The temperature dependent term, $xi_2 T$, indicates increase of the reciprocal velocity of 2D helical electrons suggesting modification of the electron spectrum in magnetic fields.
We report density dependent instabilities in the localised regime of mesoscopic two-dimensional electron systems (2DES) with intermediate strength of background disorder. They are manifested by strong resistance oscillations induced by high perpendic ular magnetic fields B_{perp}. While the amplitude of the oscillations is strongly enhanced with increasing B_{perp}, their position in density remains unaffected. The observation is accompanied by an unusual behaviour of the temperature dependence of resistance and activation energies. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation.
42 - P. S. Alekseev 2018
Two-dimensional (2D) electrons in high-quality nanostructures at low temperatures can form a viscous fluid. We develop a theory of high-frequency magnetotransport in such fluid. The time dispersion of viscosity should be taken into account at the fre quencies about and above the rate of electron-electron collisions. We show that the shear viscosity coefficients as functions of magnetic field and frequency have the only resonance at the frequency equal to the doubled cyclotron frequency. We demonstrate that such resonance manifests itself in the plasmon damping. Apparently, the predicted resonance is also responsible for the peaks and features in photoresistance and photovoltage, recently observed on the best-quality GaAs quantum wells. The last fact should considered as an important evidence of forming a viscous electron fluid in such structures.
Effect of dc electric field on transport of highly mobile 2D electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric field ind uced Landau-Zener transitions between quantum levels that corresponds to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.
We study the effects of an external magnetic field on thensuperconducting phase diagram of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. At zero temperature, there is a quantum phase transition connecting a normal and a superconducting phase, occurring at a critical line that corresponds to a magnetic field dependent critical coupling parameter, which should be observed in planar materials containing Dirac electrons, such as $Cu_xTiSe_2$. Moreover, the superconducting gap is obtained as a function of temperature, magnetic field and coupling parameter ($lambda_{rm R}$). From this, we extract the critical magnetic field $ B_{ c } $ as a function of the temperature. For small values of $ B_{ c } $, we obtain a linear decay of the critical field, which is similar to the behavior observed experimentally in the copper doped dichalcogenide $Cu_xTiSe_2$ and also in intercalated graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا