ﻻ يوجد ملخص باللغة العربية
We report density dependent instabilities in the localised regime of mesoscopic two-dimensional electron systems (2DES) with intermediate strength of background disorder. They are manifested by strong resistance oscillations induced by high perpendicular magnetic fields B_{perp}. While the amplitude of the oscillations is strongly enhanced with increasing B_{perp}, their position in density remains unaffected. The observation is accompanied by an unusual behaviour of the temperature dependence of resistance and activation energies. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation.
Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs/AlGaAs heterostructure enable a large variety of applications from fundamental research to high speed transistors. Electrical circuits are thereby commonly define
In two-dimensional (2D) electron systems, an off-resonant high-frequency circularly polarized electromagnetic field can induce the quasi-stationary bound electron states of repulsive scatterers. As a consequence, the resonant scattering of conduction
We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated ma
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the po
Two dimensional heterostructures are likely to provide new avenues for the manipulation of magnetization that is crucial for spintronics or magnetoelectronics. Here, we demonstrate that optical spin pumping can generate a large effective magnetic fie