ﻻ يوجد ملخص باللغة العربية
Effect of dc electric field on transport of highly mobile 2D electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric field induced Landau-Zener transitions between quantum levels that corresponds to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.
Quantum oscillations of nonlinear resistance are investigated in response to electric current and magnetic field applied perpendicular to single GaAs quantum wells with two populated subbands. At small magnetic fields current-induced oscillations app
The longitudinal resistivity of two dimensional (2D) electrons placed in strong magnetic field is significantly reduced by applied electric field, an effect which is studied in a broad range of magnetic fields and temperatures in GaAs quantum wells w
Oscillations of dissipative resistance of two-dimensional electrons in GaAs quantum wells are observed in response to an electric current I and a strong magnetic field applied perpendicular to the two-dimensional systems. Period of the current-induce
Shubnikov de Haas resistance oscillations of highly mobile two dimensional helical electrons propagating on a conducting surface of strained HgTe 3D topological insulator are studied in magnetic fields B tilted by angle $theta$ from the normal to the
We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tubes axis. We find that the fields give rise to an asymmetric disp