ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing points of small height for cubic polynomials

265   0   0.0 ( 0 )
 نشر من قبل Robert Benedetto
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let f in Q[z] be a polynomial of degree d at least two. The associated canonical height hat{h}_f is a certain real-valued function on Q that returns zero precisely at preperiodic rational points of f. Morton and Silverman conjectured in 1994 that the number of such points is bounded above by a constant depending only on d. A related conjecture claims that at non-preperiodic rational points, hat{h}_f is bounded below by a positive constant (depending only on d) times some kind of height of f itself. In this paper, we provide support for these conjectures in the case d=3 by computing the set of small height points for several billion cubic polynomials.



قيم البحث

اقرأ أيضاً

Let $f in Q(z)$ be a polynomial or rational function of degree 2. A special case of Morton and Silvermans Dynamical Uniform Boundedness Conjecture states that the number of rational preperiodic points of $f$ is bounded above by an absolute constant. A related conjecture of Silverman states that the canonical height $hat{h}_f(x)$ of a non-preperiodic rational point $x$ is bounded below by a uniform multiple of the height of $f$ itself. We provide support for these conjectures by computing the set of preperiodic and small height rational points for a set of degree 2 maps far beyond the range of previous searches.
We describe and implement an algorithm to find all post-critically finite (PCF) cubic polynomials defined over $mathbb{Q}$, up to conjugacy over $text{PGL}_2(bar{mathbb{Q}})$. We describe normal forms that classify equivalence classes of cubic polyno mials while respecting the field of definition. Applying known bounds on the coefficients of post-critically bounded polynomials to these normal forms simultaneously at all places of $mathbb{Q}$, we create a finite search space of cubic polynomials over $mathbb{Q}$ that may be PCF. Using a computer search of these possibly PCF cubic polynomials, we find fifteen which are in fact PCF.
Let $K$ be the function field of a smooth, irreducible curve defined over $overline{mathbb{Q}}$. Let $fin K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r ge 1,$ is a power of the prime number $p$, and let $betain overline{K}$. For all $ninmathb b{N}cup{infty}$, the Galois groups $G_n(beta)=mathop{rm{Gal}}(K(f^{-n}(beta))/K(beta))$ embed into $[C_q]^n$, the $n$-fold wreath product of the cyclic group $C_q$. We show that if $f$ is not isotrivial, then $[[C_q]^infty:G_infty(beta)]<infty$ unless $beta$ is postcritical or periodic. We are also able to prove that if $f_1(x)=x^q+c_1$ and $f_2(x)=x^q+c_2$ are two such distinct polynomials, then the fields $bigcup_{n=1}^infty K(f_1^{-n}(beta))$ and $bigcup_{n=1}^infty K(f_2^{-n}(beta))$ are disjoint over a finite extension of $K$.
We give necessary and sufficient conditions for post-critically finite polynomials to have potential good reduction at a given prime. We also answer in the negative a question posed by Silverman about conservative polynomials. Both proofs rely on dyn amical Belyi polynomials as exemplars of PCF (resp. conservative) maps.
A rational function of degree at least two with coefficients in an algebraically closed field is post-critically finite (PCF) if all of its critical points have finite forward orbit under iteration. We show that the collection of PCF rational functio ns is a set of bounded height in the moduli space of rational functions over the complex numbers, once the well-understood family known as flexible Lattes maps is excluded. As a consequence, there are only finitely many conjugacy classes of non-Lattes PCF rational maps of a given degree defined over any given number field. The key ingredient of the proof is a non-archimedean version of Fatous classical result that every attracting cycle of a rational function over the complex numbers attracts a critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا