ﻻ يوجد ملخص باللغة العربية
Let $K$ be the function field of a smooth, irreducible curve defined over $overline{mathbb{Q}}$. Let $fin K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r ge 1,$ is a power of the prime number $p$, and let $betain overline{K}$. For all $ninmathbb{N}cup{infty}$, the Galois groups $G_n(beta)=mathop{rm{Gal}}(K(f^{-n}(beta))/K(beta))$ embed into $[C_q]^n$, the $n$-fold wreath product of the cyclic group $C_q$. We show that if $f$ is not isotrivial, then $[[C_q]^infty:G_infty(beta)]<infty$ unless $beta$ is postcritical or periodic. We are also able to prove that if $f_1(x)=x^q+c_1$ and $f_2(x)=x^q+c_2$ are two such distinct polynomials, then the fields $bigcup_{n=1}^infty K(f_1^{-n}(beta))$ and $bigcup_{n=1}^infty K(f_2^{-n}(beta))$ are disjoint over a finite extension of $K$.
We formulate a general question regarding the size of the iterated Galois groups associated to an algebraic dynamical system and then we discuss some special cases of our question.
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multipl
We describe and implement an algorithm to find all post-critically finite (PCF) cubic polynomials defined over $mathbb{Q}$, up to conjugacy over $text{PGL}_2(bar{mathbb{Q}})$. We describe normal forms that classify equivalence classes of cubic polyno
For each odd prime p>=5, there exist finite p-groups G with derived quotient G/D(G)=C(p)xC(p) and nearly constant transfer kernel type k(G)=(1,2,...,2) having two fixed points. It is proved that, for p=7, this type k(G) with the simplest possible cas
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista