ﻻ يوجد ملخص باللغة العربية
We describe and implement an algorithm to find all post-critically finite (PCF) cubic polynomials defined over $mathbb{Q}$, up to conjugacy over $text{PGL}_2(bar{mathbb{Q}})$. We describe normal forms that classify equivalence classes of cubic polynomials while respecting the field of definition. Applying known bounds on the coefficients of post-critically bounded polynomials to these normal forms simultaneously at all places of $mathbb{Q}$, we create a finite search space of cubic polynomials over $mathbb{Q}$ that may be PCF. Using a computer search of these possibly PCF cubic polynomials, we find fifteen which are in fact PCF.
A rational function of degree at least two with coefficients in an algebraically closed field is post-critically finite (PCF) if all of its critical points have finite forward orbit under iteration. We show that the collection of PCF rational functio
Permutation polynomials (PPs) of the form $(x^{q} -x + c)^{frac{q^2 -1}{3}+1} +x$ over $mathbb{F}_{q^2}$ were presented by Li, Helleseth and Tang [Finite Fields Appl. 22 (2013) 16--23]. More recently, we have constructed PPs of the form $(x^{q} +bx +
Let f in Q[z] be a polynomial of degree d at least two. The associated canonical height hat{h}_f is a certain real-valued function on Q that returns zero precisely at preperiodic rational points of f. Morton and Silverman conjectured in 1994 that the
Let $f:{mathbb P}^nto{mathbb P}^n$ be a morphism of degree $dge2$. The map $f$ is said to be post-critically finite (PCF) if there exist integers $kge1$ and $ellge0$ such that the critical locus $operatorname{Crit}_f$ satisfies $f^{k+ell}(operatornam
In this paper we introduce the additive analogue of the index of a polynomial over finite fields. We study several problems in the theory of polynomials over finite fields in terms of their additive indices, such as value set sizes, bounds on multipl