ﻻ يوجد ملخص باللغة العربية
A rational function of degree at least two with coefficients in an algebraically closed field is post-critically finite (PCF) if all of its critical points have finite forward orbit under iteration. We show that the collection of PCF rational functions is a set of bounded height in the moduli space of rational functions over the complex numbers, once the well-understood family known as flexible Lattes maps is excluded. As a consequence, there are only finitely many conjugacy classes of non-Lattes PCF rational maps of a given degree defined over any given number field. The key ingredient of the proof is a non-archimedean version of Fatous classical result that every attracting cycle of a rational function over the complex numbers attracts a critical point.
We describe and implement an algorithm to find all post-critically finite (PCF) cubic polynomials defined over $mathbb{Q}$, up to conjugacy over $text{PGL}_2(bar{mathbb{Q}})$. We describe normal forms that classify equivalence classes of cubic polyno
Let f be a degree d polynomial defined over the nonarchimedean field C_p, normalized so f is monic and f(0)=0. We say f is post-critically bounded, or PCB, if all of its critical points have bounded orbit under iteration of f. It is known that if p i
Let $f:{mathbb P}^nto{mathbb P}^n$ be a morphism of degree $dge2$. The map $f$ is said to be post-critically finite (PCF) if there exist integers $kge1$ and $ellge0$ such that the critical locus $operatorname{Crit}_f$ satisfies $f^{k+ell}(operatornam
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This sli
We generalise Dworks theory of $p$-adic formal congruences from the univariate to a multi-variate setting. We apply our results to prove integrality assertions on the Taylor coefficients of (multi-variable) mirror maps. More precisely, with $mathbf z