ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a Minimum Branching Fraction for Dark Matter Annihilation into Electromagnetic Final States

171   0   0.0 ( 0 )
 نشر من قبل Robert J. Scherrer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observational limits on the high-energy neutrino background have been used to place general constraints on dark matter that annihilates only into standard model particles. Dark matter particles that annihilate into neutrinos will also inevitably branch into electromagnetic final states through higher-order tree and loop diagrams that give rise to charged leptons, and these charged particles can transfer their energy into photons via synchrotron radiation or inverse Compton scattering. In the context of effective field theory, we calculate the loop-induced branching ratio to charged leptons and show that it is generally quite large, typically >1%, when the scale of the dark matter mass exceeds the electroweak scale, M_W. For a branching fraction >3%, the synchrotron radiation bounds on dark matter annihilation are currently stronger than the corresponding neutrino bounds in the interesting mass range from 100 GeV to 1 TeV. For dark matter masses below M_W, our work provides a plausible framework for the construction of a model for neutrinos only dark matter annihilations.

قيم البحث

اقرأ أيضاً

We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of d ark matter, we derive and plot the coupling of the singlet fermion with the singlet Higgs, $g_s$, versus the dark matter mass. We analytically compute the pair annihilation cross section of singlet fermionic dark matter into two photons. The thermally averaged of this cross section is calculated for wide range of energies and plotted versus dark matter mass using $g_s$ consistent with the relic abundance condition. We also compare our results with the Fermi-Lat observations.
We point out a selection rule for enhancement (suppression) of odd (even) partial waves of dark matter coannihilation or annihilation using Sommerfeld effect. Using this, the usually velocity-suppressed p-wave annihilation can dominate the annihilati on signals in the present Universe. The selection mechanism is a manifestation of the exchange symmetry of identical incoming particles, and generic for multi-state DM with off-diagonal long-range interactions. As a consequence, the relic and late-time annihilation rates are parametrically different and a distinctive phenomenology, with large but strongly velocity-dependent annihilation rates, is predicted.
Using 88.9 million BB events collected by the BaBar detector at the Y(4S), we measure the branching fraction for the radiative penguin process B -> X_s gamma from the sum of 38 exclusive final states. The inclusive branching fraction above a minimum photon energy E_gamma > 1.9 GeV is BF (b -> s gamma) = (3.27 +/- 0.18 (stat.) +0.55/-0.40 (syst.) +0.04/-0.09 (theory)) 10^-4. We also measure the isospin asymmetry between B^- -> X_s ubar gamma and B^0bar -> X_s dbar gamma to be Delta_0- = -0.006 +/- 0.058 (stat.) +/- 0.009 (syst.) +/- 0.024 (B^0bar / B^-). The photon energy spectrum is measured in the B rest frame, from which moments are derived for different values of the minimum photon energy. We present fits to the photon spectrum and moments which give the heavy-quark parameters m_b and mu_pi^2. The fitted parameters are consistent with those obtained from semileptonic B -> X_c l nu decays, and are useful inputs for the extraction of Vub from measurements of semileptonic B -> X_u l nu decays.
139 - Yi-Lei Tang , Shou-hua Zhu 2015
In this paper, we will discuss a specific case that the dark matter particles annihilate into right-handed neutrinos. We calculate the predicted gamma-ray excess from the galactic center and compare our results with the data from the Fermi-LAT. An ap proximately 10-60 GeV right-handed neutrino with heavier dark matter particle can perfectly explain the observed spectrum. The annihilation cross section $langle sigma v rangle$ falls within the range $0.5$-$4 times 10^{-26} text{ cm}^3/text{s}$, which is roughly compatible with the WIMP annihilation cross section.
A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained by constraining the appearance rate of the annihilation products which are hardest to detect. The production of neutrinos, via the process $chi chi to bar u u $, has thus been used to set a strong general bound on the dark matter annihilation rate. However, Standard Model radiative corrections to this process will inevitably produce photons which may be easier to detect. We present an explicit calculation of the branching ratios for the electroweak bremsstrahlung processes $chi chi to bar u u Z$ and $chi chi to bar u e W$. These modes inevitably lead to electromagnetic showers and further constraints on the DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to the case of dark matter decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا