ﻻ يوجد ملخص باللغة العربية
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of dark matter, we derive and plot the coupling of the singlet fermion with the singlet Higgs, $g_s$, versus the dark matter mass. We analytically compute the pair annihilation cross section of singlet fermionic dark matter into two photons. The thermally averaged of this cross section is calculated for wide range of energies and plotted versus dark matter mass using $g_s$ consistent with the relic abundance condition. We also compare our results with the Fermi-Lat observations.
It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extendi
It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on
We revisit a Dark Matter model with an extension of the Standard Model with two real singlets $chi$ and $eta$ obeying a $Z_2 otimes Z_2$ symmetry, where $Z_2$ is broken spontaneously. While $chi$ serves as a stable Dark Matter candidate providing the
We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and new singlet one. Furthermore, we restudy the direct detection constraints with the upda
We present a study of singlet-doublet vector-like leptonic dark matter (DM) in the framework of two Higgs doublet model (2HDM), where the dark sector is comprised of one doublet and one singlet vectorlike fermions (VLFs). The DM, that arises as an ad