ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak Bremsstrahlung in Dark Matter Annihilation

189   0   0.0 ( 0 )
 نشر من قبل Nicole F. Bell
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained by constraining the appearance rate of the annihilation products which are hardest to detect. The production of neutrinos, via the process $chi chi to bar u u $, has thus been used to set a strong general bound on the dark matter annihilation rate. However, Standard Model radiative corrections to this process will inevitably produce photons which may be easier to detect. We present an explicit calculation of the branching ratios for the electroweak bremsstrahlung processes $chi chi to bar u u Z$ and $chi chi to bar u e W$. These modes inevitably lead to electromagnetic showers and further constraints on the DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to the case of dark matter decay.

قيم البحث

اقرأ أيضاً

If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppress ed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.
Interpretations of indirect searches for dark matter (DM) require theoretical predictions for the annihilation or decay rates of DM into stable particles of the standard model. These predictions include usually only final states accessible as lowest order tree-level processes, with electromagnetic bremsstrahlung and the loop-suppressed two gamma-ray line as exceptions. We show that this restriction may lead to severely biased results for DM tailored to produce only leptons in final states and with mass in the TeV range. For such models, unavoidable electroweak bremsstrahlung of Z and W-bosons has a significant influence both on the branching ratio and the spectral shape of the final state particles. We work out the consequences for two situations: Firstly, the idealized case where DM annihilates at tree level with 100% branching ratio into neutrinos. For a given cross section, this leads eventually to minimal yields of photons, electrons, positrons and antiprotons. Secondly, the case where the only allowed two-body final states are electrons. The latter case is typical of models aimed at fitting cosmic ray e^- and e^+ data. We find that the multimessenger signatures of such models can be significantly modified with respect to results presented in the literature.
We revisit the calculation of electroweak bremsstrahlung contributions to dark matter annihilation. Dark matter annihilation to leptons is necessarily accompanied by electroweak radiative corrections, in which a $W$ or $Z$ boson is also radiated. Sig nificantly, while many dark matter models feature a helicity suppressed annihilation rate to fermions, bremsstrahlung process can remove this helicity suppression such that the branching ratios Br($ell u W $), Br($ell^+ell^-Z$), and Br($bar u u Z$) dominate over Br($ell^+ell^-$) and Br($bar u u$). We find this is most significant in the limit where the dark matter mass is nearly degenerate with the mass of the boson which mediates the annihilation process. Electroweak bremsstrahlung has important phenomenological consequences both for the magnitude of the total dark matter annihilation cross section and for the character of the astrophysical signals for indirect detection. Given that the $W$ and $Z$ gauge bosons decay dominantly via hadronic channels, it is impossible to produce final state leptons without accompanying protons, antiprotons, and gamma rays.
We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter. We derive the most general, renormalizable scalar potential, assuming the presence of the Standard Model Higgs doublet, $H$, and an electroweak multiplet $Ph i$ of arbitrary SU(2$)_L$ rank and hypercharge, $Y$. We show that, in general, the $Phi$-$H$ Higgs portal interactions depend on three, rather than two independent couplings as has been previously considered in the literature. For the phenomenologically viable case of $Y=0$ multiplets, we focus on the septuplet and quintuplet cases, and consider the interplay of relic density and spin-independent direct detection cross section. We show that both the relic density and direct detection cross sections depend on a single linear combination of Higgs portal couplings, $lambda_{rm eff}$. For $lambda_{rm eff}sim mathcal{O}(1)$, present direct detection exclusion limits imply that the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of the observed DM relic density.
Isolated lepton momenta, in particular their directions are the most precisely measured quantities in pp collisions at LHC. This offers opportunities for multitude of precision measurements. It is of practical importance to verify if precision measur ements with lep- tons in the final state require all theoretical effects evaluated simultaneously or if QED bremsstrahlung in the final state can be separated without unwanted precision loss. Results for final state bremsstrahlung in the decays of narrow resonances are obtained from the Feynman rules of QED in an unambiguous way and can be controlled with a very high precision. Also for resonances of non-negligible width, if calculations are appropriately performed, such separation from the remaining electroweak effects can be expected. Our paper is devoted to validation that final state QED bremsstrahlung can indeed be separated from the rest of QCD and electroweak effects, in the production and decay of Z and W bosons, and to estimation of the resulting systematic error. The quantitative discussion is based on Monte Carlo programs PHOTOS and SANC, as well as on KKMC which is used for benchmark results. We show, that for a large classes of W and Z boson observables as used at LHC, theoretical error on photonic bremsstrahlung is 0.1 or 0.2%, depending on the program options used. An overall theoretical error on QED final state radiation, i.e. taking into account missing corrections due to pair emission and interference with initial state radiation is estimated respectively at 0.2% or 0.3% again depending on the program option used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا