ﻻ يوجد ملخص باللغة العربية
In this paper, we will discuss a specific case that the dark matter particles annihilate into right-handed neutrinos. We calculate the predicted gamma-ray excess from the galactic center and compare our results with the data from the Fermi-LAT. An approximately 10-60 GeV right-handed neutrino with heavier dark matter particle can perfectly explain the observed spectrum. The annihilation cross section $langle sigma v rangle$ falls within the range $0.5$-$4 times 10^{-26} text{ cm}^3/text{s}$, which is roughly compatible with the WIMP annihilation cross section.
We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between d
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around $1.4$ TeV. In this paper, we consider the minimal gauged $U(1)_{B-L}$ m
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gam
We investigate a neutral gauge boson X originated from a hidden U(1) extension of the standard model as the particle dark matter candidate. The vector dark matter interacts with the standard model fermions through heavy fermion mediators. The interac
We consider a simple extension of the type-II two-Higgs-doublet model by introducing a real scalar as a candidate for dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is int