ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter annihilation into right-handed neutrinos and the galactic center gamma-ray excess

140   0   0.0 ( 0 )
 نشر من قبل Yilei Tang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we will discuss a specific case that the dark matter particles annihilate into right-handed neutrinos. We calculate the predicted gamma-ray excess from the galactic center and compare our results with the data from the Fermi-LAT. An approximately 10-60 GeV right-handed neutrino with heavier dark matter particle can perfectly explain the observed spectrum. The annihilation cross section $langle sigma v rangle$ falls within the range $0.5$-$4 times 10^{-26} text{ cm}^3/text{s}$, which is roughly compatible with the WIMP annihilation cross section.



قيم البحث

اقرأ أيضاً

We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between d ark matter and baryons? Independently of this, we find a number of constraints on the assumed right-handed interactions. They arise in particular from the measurements by solar neutrino experiments. We come to the conclusion that such particles interactions are possible, and could reproduce the peculiar angular distribution, but not the rate of the INTEGRAL signal. However, we stress that solar neutrino experiments are susceptible to provide further constraints in the future.
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around $1.4$ TeV. In this paper, we consider the minimal gauged $U(1)_{B-L}$ m odel with a right-handed neutrino (RHN) dark matter (DM) and interpret the DAMPE peak with a late-time decay of the RHN DM into $e^pm W^mp$. We find that a DM lifetime $tau_{DM} sim 10^{28}$ s can fit the DAMPE peak with a DM mass $m_{DM}=3$ TeV. This favored lifetime is close to the current bound on it by Fermi-LAT, our decaying RHN DM can be tested once the measurement of cosmic gamma ray flux is improved. The RHN DM communicates with the Standard Model particles through the $U(1)_{B-L}$ gauge boson ($Z^prime$ boson), and its thermal relic abundance is controlled by only three free parameters: $m_{DM}$, the $U(1)_{B-L}$ gauge coupling ($alpha_{BL}$), and the $Z^prime$ boson mass ($m_{Z^prime}$). For $m_{DM}=3$ TeV, the rest of the parameters are restricted to be $m_{Z^prime}simeq 6$ TeV and $0.00807 leq alpha_{BL} leq 0.0149$, in order to reproduce the observed DM relic density and to avoid the Landau pole for the running $alpha_{BL}$ below the Planck scale. This allowed region will be tested by the search for a $Z^prime$ boson resonance at the future Large Hadron Collider.
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gam ma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halos local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.
363 - Jiang-Hao Yu 2014
We investigate a neutral gauge boson X originated from a hidden U(1) extension of the standard model as the particle dark matter candidate. The vector dark matter interacts with the standard model fermions through heavy fermion mediators. The interac tions give rise to t-channel annihilation cross section in the XX to ff process, which dominates the thermal relic abundance during thermal freeze-out and produces measurable gamma-ray flux in the galactic halo. For a light vector dark matter, if it predominantly couples to the third generation fermions, this model could explain the excess of gamma rays from the galactic center. We show that the vector dark matter with a mass of 20 ~ 40 GeV and that annihilate into the bb and tautau final states provides an excellent description of the observed gamma-ray excess. The parameter space aimed at explaining the gamma-ray excess, could also provide the correct thermal relic density and is compatible with the constraints from electroweak precision data, Higgs invisible decay, and collider searches. We also show the dark matter couplings to the nucleon from the fermion portal interactions are loop-suppressed, and only contribute to the spin-dependent cross section. So the vector dark matter could easily escape the stringent constraints from the direct detection experiments.
We consider a simple extension of the type-II two-Higgs-doublet model by introducing a real scalar as a candidate for dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is int o a $bbar{b}$ pair, and this annihilation mode suitably explains the observed excess of the gamma-ray flux from the Galactic Center. We identify the parameter region of the model that can fit the gamma-ray excess and satisfy phenomenological constraints, such as the observed dark matter relic density and the null results of direct dark matter search experiments. Most of the parameter region is found to be within the search reach of future direct dark matter detection experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا