ﻻ يوجد ملخص باللغة العربية
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, Tc is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.
We report the observation of two gaps in the superconductor SmFeAsO$_{0.9}$F$_{0.1}$ (F-SmFeAsO) with $T_c=51.5K$ as measured by point-contact spectroscopy. Both gaps decrease with temperature and vanish at $T_c$ and the temperature dependence of the
Superconductivity is observed with critical temperatures near 9K in the tetragonal compound Mo5PB2. This material adopts the Cr5B3 structure type common to supercondcuting Nb5Si3-xBx, Mo5SiB2, and W5SiB2, which have critical temperatures of 5.8-7.8 K
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings tha
We study the spin resonance in superconducting state of iron-based materials within multiband models with two unequal gaps, $Delta_L$ and $Delta_S$, on different Fermi surface pockets. We show that due to the indirect nature of the gap entering the s