ﻻ يوجد ملخص باللغة العربية
We report the observation of two gaps in the superconductor SmFeAsO$_{0.9}$F$_{0.1}$ (F-SmFeAsO) with $T_c=51.5K$ as measured by point-contact spectroscopy. Both gaps decrease with temperature and vanish at $T_c$ and the temperature dependence of the gaps are described by the theoretical prediction of the Bardeen-Cooper-Schrieffer (BCS) theory. A zero-bias conductance peak (ZBCP) was observed, indicating the presence of Andreev bound states at the surface of F-SmFeAsO. Our results strongly suggest an unconventional nodal superconductivity with multiple gaps in F-SmFeAsO.
The low-temperature antiferromagnetic state of the Sm-ions in both nonsuperconducting SmFeAsO and superconducting SmFeAsO$_{0.9}$F$_{0.1}$ single crystals was studied by magnetic torque, magnetization, and magnetoresistance measurements in magnetic f
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, T
We will probe the intrinsic behavior of spin susceptibility chi_(spin) in the LaFeAsO(1-x)F(x) superconductor (x ~ 0.1, Tc ~ 27K) using 19-F and 75-As NMR techniques. Our new results firmly establish the pseudo-gap behavior with Delta_(PG)/kB ~ 140K.
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice
Superconductivity is observed with critical temperatures near 9K in the tetragonal compound Mo5PB2. This material adopts the Cr5B3 structure type common to supercondcuting Nb5Si3-xBx, Mo5SiB2, and W5SiB2, which have critical temperatures of 5.8-7.8 K