ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

391   0   0.0 ( 0 )
 نشر من قبل Guo-Qing Zheng
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.



قيم البحث

اقرأ أيضاً

Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagat ion vectors. Consequently, three different types of magnetic order are possible. Of theses, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni- and Co-doped CaKFe4As4 based on thermodynamic, transport, structural and local magnetic probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe4As4 structure. Our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.
166 - M. Fu , D. A. Torchetti , T. Imai 2012
We report a 75-As single crystal NMR investigation of LaFeAsO, the parent phase of a pnictide high Tc superconductor. We demonstrate that spin dynamics develop a strong two-fold anisotropy within each orthorhombic domain below the tetragonal-orthorho mbic structural phase transition at T[TO]~156 K. This intermediate state with a dynamical breaking of the rotational symmetry freezes progressively into a spin density wave (SDW) below T[SDW]~142 K. Our findings are consistent with the presence of a spin nematic state below T[TO] with an incipient magnetic order.
The in-plane thermal conductivity $kappa$ of overdoped FeAs-based superconductor BaFe$_{1.73}$Co$_{0.27}$As$_2$ ($T_c$ = 8.1 K) single crystal was measured down to 80 mK. In zero field, the residual linear term $kappa_0/T$ is negligible, suggesting a nodeless superconducting gap in the $ab$-plane. In magnetic field, $kappa_0/T$ increases rapidly, very different from that of conventional s-wave superconductors. This anomalous $kappa_0/T(H)$ may reveal an exotic superconducting gap structure in overdoped BaFe$_{1.73}$Co$_{0.27}$As$_2$: the vanishing hole ($beta$) pocket has a much larger gap than the electron ($gamma$ and $delta$) pockets which contain most of the carriers. Such an exotic gap structure is an evidence for superconducting state induced by interband interactions, in which the band with the {it smaller} density of states has a {it larger} gap.
149 - K. Matano , Z.A. Ren , X.L. Dong 2008
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, T c is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.
We demonstrate that the anisotropy R of the paramagnetic spin fluctuations grows toward Tc at 75As sites in the optimally electron-doped superconductor Ba[(Fe0.92Co0.08)2]2As2, with stronger spin fluctuations along the c-axis. Our finding is in remar kable contrast with the case of high T$_c$ cuprates, where R is independent of temperature above Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا