ﻻ يوجد ملخص باللغة العربية
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings that go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the $stau_{3}$ multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a $d+d$ intra- and inter-band pairing, is shown to contrast with the more familiar $d +text{i}d$ state in a way analogous to how the B- triplet pairing phase of enhe superfluid differs from its A- phase counterpart. In addition, we construct an analogue of the $stau_{3}$ pairing for the heavy-fermion superconductor CeCu$_{2}$Si$_{2}$, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that $d$-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.
Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectro
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin
We study by Variational Monte Carlo an extended Hubbard model away from half filled band density which contains two competing nearest-neighbor interactions: a superexchange $J$ favoring d-wave superconductivity and a repulsion $V$ opposing against it
We report the successful synthesis of single-crystalline cuprate superconductors HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$ and HgBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{8+delta}$. These compounds are well-known for their high optimal superconducting critical temperature
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$