ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracy-Widom limit for Kendalls tau

84   0   0.0 ( 0 )
 نشر من قبل Zhigang Bao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Zhigang Bao




اسأل ChatGPT حول البحث

In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy-Widom law for its largest eigenvalue. It is the first Tracy-Widom law for a nonparametric random matrix model, and also the first Tracy-Widom law for a high-dimensional U-statistic.



قيم البحث

اقرأ أيضاً

Let $bY =bR+bX$ be an $Mtimes N$ matrix, where $bR$ is a rectangular diagonal matrix and $bX$ consists of $i.i.d.$ entries. This is a signal-plus-noise type model. Its signal matrix could be full rank, which is rarely studied in literature compared w ith the low rank cases. This paper is to study the extreme eigenvalues of $bYbY^*$. We show that under the high dimensional setting ($M/Nrightarrow cin(0,1]$) and some regularity conditions on $bR$ the rescaled extreme eigenvalue converges in distribution to Tracy-Widom distribution ($TW_1$).
510 - Pranab K. Sen 2008
High-dimensional data models, often with low sample size, abound in many interdisciplinary studies, genomics and large biological systems being most noteworthy. The conventional assumption of multinormality or linearity of regression may not be plaus ible for such models which are likely to be statistically complex due to a large number of parameters as well as various underlying restraints. As such, parametric approaches may not be very effective. Anything beyond parametrics, albeit, having increased scope and robustness perspectives, may generally be baffled by the low sample size and hence unable to give reasonable margins of errors. Kendalls tau statistic is exploited in this context with emphasis on dimensional rather than sample size asymptotics. The Chen--Stein theorem has been thoroughly appraised in this study. Applications of these findings in some microarray data models are illustrated.
The concordance signature of a multivariate continuous distribution is the vector of concordance probabilities for margins of all orders; it underlies the bivariate and multivariate Kendalls tau measure of concordance. It is shown that every attainab le concordance signature is equal to the concordance signature of a unique mixture of the extremal copulas, that is the copulas with extremal correlation matrices consisting exclusively of 1s and -1s. This result establishes that the set of attainable Kendall rank correlation matrices of multivariate continuous distributions in arbitrary dimension is the set of convex combinations of extremal correlation matrices, a set known as the cut polytope. A methodology for testing the attainability of concordance signatures using linear optimization and convex analysis is provided. The elliptical copulas are shown to yield a strict subset of the attainable concordance signatures as well as a strict subset of the attainable Kendall rank correlation matrices; the Student t copula is seen to converge to a mixture of extremal copulas sharing its concordance signature with all elliptical distributions that have the same correlation matrix. A method of estimating an attainable concordance signature from data is derived and shown to correspond to using standard estimates of Kendalls tau in the absence of ties. The methodology has application to Monte Carlo simulations of dependent random variables as well as expert elicitation of consistent systems of Kendalls tau dependence measures.
In the last decade, sequential Monte-Carlo methods (SMC) emerged as a key tool in computational statistics. These algorithms approximate a sequence of distributions by a sequence of weighted empirical measures associated to a weighted population of p articles. These particles and weights are generated recursively according to elementary transformations: mutation and selection. Examples of applications include the sequential Monte-Carlo techniques to solve optimal non-linear filtering problems in state-space models, molecular simulation, genetic optimization, etc. Despite many theoretical advances the asymptotic property of these approximations remains of course a question of central interest. In this paper, we analyze sequential Monte Carlo methods from an asymptotic perspective, that is, we establish law of large numbers and invariance principle as the number of particles gets large. We introduce the concepts of weighted sample consistency and asymptotic normality, and derive conditions under which the mutation and the selection procedure used in the sequential Monte-Carlo build-up preserve these properties. To illustrate our findings, we analyze SMC algorithms to approximate the filtering distribution in state-space models. We show how our techniques allow to relax restrictive technical conditions used in previously reported works and provide grounds to analyze more sophisticated sequential sampling strategies.
We establish a central limit theorem for (a sequence of) multivariate martingales which dimension potentially grows with the length $n$ of the martingale. A consequence of the results are Gaussian couplings and a multiplier bootstrap for the maximum of a multivariate martingale whose dimensionality $d$ can be as large as $e^{n^c}$ for some $c>0$. We also develop new anti-concentration bounds for the maximum component of a high-dimensional Gaussian vector, which we believe is of independent interest. The results are applicable to a variety of settings. We fully develop its use to the estimation of context tree models (or variable length Markov chains) for discrete stationary time series. Specifically, we provide a bootstrap-based rule to tune several regularization parameters in a theoretically valid Lepski-type method. Such bootstrap-based approach accounts for the correlation structure and leads to potentially smaller penalty choices, which in turn improve the estimation of the transition probabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا