ترغب بنشر مسار تعليمي؟ اضغط هنا

Frictional Duality Observed during Nanoparticle Sliding

304   0   0.0 ( 0 )
 نشر من قبل Andre Schirmeisen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most fundamental questions in tribology concerns the area dependence of friction at the nanoscale. Here, experiments are presented where the frictional resistance of nanoparticles is measured by pushing them with the tip of an atomic force microscope. We find two coexisting frictional states: While some particles show finite friction increasing linearly with the interface areas of up to 310,000nm^2, other particles assume a state of frictionless sliding. The results further suggest a link between the degree of surface contamination and the occurrence of this duality.



قيم البحث

اقرأ أيضاً

The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts dynamics. We report the facet resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment dependent chemical composition. We find that the initially Pt terminated nanoparticle surface gets Rh enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent and the Rh enrichment is non-reversible under subsequent CO reduction. Tracking facet resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity and lifetime.
Oriented attachment (OA) has become a well-recognized mechanism for the growth of metal, ceramic, and biomineral crystals. While many computational and experimental studies of OA have shown that particles can attach with some misorientation then rota te to remove adjoining grain boundaries, the underlying atomistic pathways for this Imperfect OA process remain the subject of debate. In this study, molecular dynamics and in situ TEM were used to probe the crystallographic evolution of up to 30 gold and copper nanoparticles during aggregation. It was found that Imperfect OA occurs because (1) grain boundaries become quantized when their size is comparable to the separation between constituent dislocations and (2) kinetic barriers associated with the glide of grain boundary dislocations are small. In support of these findings, TEM experiments show the formation of a single crystal aggregate after annealing 9 initially misoriented, agglomerated particles with evidence of dislocation slip and twin formation during particle/grain alignment. These observations motivate future work on assembled nanocrystals with tailored defects and call for a revision of Read-Shockley models for grain boundary energies in nanocrystalline materials.
Vertical ferroelectricity where a net dipole moment appears as a result of in-plane ionic displacements has gained enormous attention following its discovery in transition metal dichalcogenides. Based on first-principles calculations, we report on th e evidence of robust vertical ferroelectricity upon interlayer sliding in layered semiconducting $beta$-ZrI$_{2}$, a sister material of polar semimetals MoTe$_{2}$ and WTe$_{2}$. The microscopic origin of ferroelectricity in ZrI$_{2}$ is attributed to asymmetric shifts of electronic charges within a trilayer, revealing a subtle interplay of rigid sliding displacements and charge redistribution down to ultrathin thicknesses. We further investigate the variety of ferroelectric domain boundaries and predict a stable charged domain wall with a quasi-two-dimensional electron gas and a high built-in electric field that can increase electron mobility and electromechanical response in multifunctional devices. Semiconducting behaviour and a small switching barrier of ZrI$_{2}$ hold promise for novel ferroelectric applications, and our results provide important insights for further development of slidetronics ferroelectricity.
381 - Julien Scheibert 2009
A MEMS-based sensing device is used to measure the normal and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress pr ofiles measured along the sliding direction and the predictions of an original textit{exact} bidimensional model of friction. The latter assumes Amontons friction law, which implies that in steady sliding the interfacial tangential stress is equal to the normal stress times a pressure-independent dynamic friction coefficient $mu_d$, but makes no further assumption on the normal stress field. Discrepancy between the measured and calculated profiles is less than 14% over the range of loads explored. Comparison with a test model, based on the classical assumption that the normal stress field is unchanged upon tangential loading, shows that the exact model better reproduces the experimental profiles at high loads. However, significant deviations remain that are not accounted for by either calculations. In that regard, the relevance of two other assumptions made in the calculations, namely (i) the smoothness of the interface and (ii) the pressure-independence of $mu_d$ is briefly discussed.
105 - R. Knut 2018
Ni$_{0.8}$Fe$_{0.2}$ (Py) and Py alloyed with Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe, an effect which is strongly enhanced by Cu alloying. We have studied a b road range of Cu concentrations to elucidate the effects of Cu alloying in Py. The orbital/spin magnetic moment ratios are largely unaffected by Cu alloying, signifying that Cu-induced changes in the ultrafast demagnetization are not related to spin-orbit interactions. We show that magnon diffusion can explain the delayed Ni response, which we attribute to an enhanced magnon generation rate in the Fe sublattice relative to the Ni sublattice. Furthermore, Py exhibits prominent RKKY-like exchange interactions, which are strongly enhanced between Fe atoms and diminished between Ni atoms by Cu alloying. An increased Fe magnon scattering rate is expected to occur concurrently with this increased Fe-Fe exchange interaction, supporting the results obtained from the magnon diffusion model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا