ﻻ يوجد ملخص باللغة العربية
A MEMS-based sensing device is used to measure the normal and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress profiles measured along the sliding direction and the predictions of an original textit{exact} bidimensional model of friction. The latter assumes Amontons friction law, which implies that in steady sliding the interfacial tangential stress is equal to the normal stress times a pressure-independent dynamic friction coefficient $mu_d$, but makes no further assumption on the normal stress field. Discrepancy between the measured and calculated profiles is less than 14% over the range of loads explored. Comparison with a test model, based on the classical assumption that the normal stress field is unchanged upon tangential loading, shows that the exact model better reproduces the experimental profiles at high loads. However, significant deviations remain that are not accounted for by either calculations. In that regard, the relevance of two other assumptions made in the calculations, namely (i) the smoothness of the interface and (ii) the pressure-independence of $mu_d$ is briefly discussed.
This paper addresses the issue of the determination of the frictional stress distribution from the inversion of the measured surface displacement field for sliding interfaces between a glass lens and a rubber (poly(dimethylsiloxane)) substrate. Exper
Digital Image Correlation is used to study the micromechanics of a multi-contact interface formed between a rough elastomer and a smooth glass surface. The in-plane elastomer deformation is monitored during the incipient sliding regime, i.e. the tran
In this paper, we report on new experimental results on the effects of in-plane surface stretching on the friction of Poly(DiMethylSiloxane) (PDMS) rubber with smooth rigid probes. Friction-induced displacement fields are measured at the surface of t
Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the o
One of the most fundamental questions in tribology concerns the area dependence of friction at the nanoscale. Here, experiments are presented where the frictional resistance of nanoparticles is measured by pushing them with the tip of an atomic force