ﻻ يوجد ملخص باللغة العربية
Ni$_{0.8}$Fe$_{0.2}$ (Py) and Py alloyed with Cu exhibit intriguing ultrafast demagnetization behavior, where the Ni magnetic moment shows a delayed response relative to the Fe, an effect which is strongly enhanced by Cu alloying. We have studied a broad range of Cu concentrations to elucidate the effects of Cu alloying in Py. The orbital/spin magnetic moment ratios are largely unaffected by Cu alloying, signifying that Cu-induced changes in the ultrafast demagnetization are not related to spin-orbit interactions. We show that magnon diffusion can explain the delayed Ni response, which we attribute to an enhanced magnon generation rate in the Fe sublattice relative to the Ni sublattice. Furthermore, Py exhibits prominent RKKY-like exchange interactions, which are strongly enhanced between Fe atoms and diminished between Ni atoms by Cu alloying. An increased Fe magnon scattering rate is expected to occur concurrently with this increased Fe-Fe exchange interaction, supporting the results obtained from the magnon diffusion model.
The mechanism underlying femtosecond laser pulse induced ultrafast magnetization dynamics remains elusive despite two decades of intense research on this phenomenon. Most experiments focused so far on characterizing magnetization and charge carrier d
Laser-induced ultrafast demagnetization has puzzled researchers around the world for over two decades. Intrinsic complexity in electronic, magnetic, and phononic subsystems is difficult to understand microscopically. So far it is not possible to expl
We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad ran
Using a time-resolved magneto-optical Kerr effect (TR-MOKE) microscope, we observed ultrafast demagnetization of inverse-spinel-type NiCo2O4 (NCO) epitaxial thin films of the inverse spinel type ferrimagnet NCO with perpendicular magnetic anisotropy.
Spin and orbital angular momenta are two intrinsic properties of an electron and are responsible for the physics of a solid. How the spin and orbital evolve with respect to each other on several hundred femtoseconds is largely unknown, but it is at t