ﻻ يوجد ملخص باللغة العربية
We calculate the magnetic-field and temperature dependence of all quantum corrections to the ensemble-averaged conductance of a network of quantum dots. We consider the limit that the dimensionless conductance of the network is large, so that the quantum corrections are small in comparison to the leading, classical contribution to the conductance. For a quantum dot network the conductance and its quantum corrections can be expressed solely in terms of the conductances and form factors of the contacts and the capacitances of the quantum dots. In particular, we calculate the temperature dependence of the weak localization correction and show that it is described by an effective dephasing rate proportional to temperature.
Using different techniques, and Fermi-liquid relationships, we calculate the variation with applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the
We analyze the zero temperature conductance of a parallel T-shaped double quantum dot system. We present an analytical expression for the conductance of the system in terms of the total number of electrons in both quantum dots. Our results confirm th
Quantum transport in magnetic topological insulators reveals the strong interplay between the magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi2Se3 thin films showed the anomalous
Recent experiments have measured the signatures of the Kondo effect in the zero-field thermopower of strongly correlated quantum dots [Svilans {em et al.,} Phys. Rev. Lett. {bf 121}, 206801 (2018); Dutta {em et al.,} Nano Lett. {bf 19}, 506 (2019)].