ﻻ يوجد ملخص باللغة العربية
Quantum transport in magnetic topological insulators reveals the strong interplay between the magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi2Se3 thin films showed the anomalous temperature dependence of the magnetoconductivity while their field dependence presents a clear signature of weak anti-localization [Tkac et al., Phys. Rev. Lett. 123, 036406(2019)]. Here we demonstrate that the tiny mass of the surface electrons induced by the bulk magnetization leads to a temperature-dependent correction to the pi Berry phase, and generates a decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the quantum correction to the conductivity can exhibit non-monotonic behavior by decreasing the temperature. This effect is attributed to the close relation of the Berry phase and quantum interference of the topological surface electrons in quantum topological materials.
Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronics devices based on topological materials. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)] on magn
The low-energy physics of two-dimensional Quantum Anomalous Hall insulators like (Hg,Mn)Te quantum wells or magnetically doped (Bi,Sb)Te thin films can be effectively described by two Chern insulators, including a Dirac, as well as a momentum-depende
The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and t
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
As one of paradigmatic phenomena in condensed matter physics, the quantum anomalous Hall effect (QAHE) in stoichiometric Chern insulators has drawn great interest for years. By using model Hamiltonian analysis and first-principle calculations, we est