ﻻ يوجد ملخص باللغة العربية
Using different techniques, and Fermi-liquid relationships, we calculate the variation with applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit $U gg Delta$ where $U$ is the Coulomb repulsion and $Delta$ is half the resonant-level width, and consider several values of the dot level energy $E_d$, ranging from the Kondo regime $epsilon_F-E_d gg Delta$ to the intermediate-valence regime $epsilon_F-E_d sim Delta$, where $epsilon_F$ is the Fermi energy. We have mainly used density-matrix renormalization group (DMRG) and numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from DMRG and NRG+RPT are compared with the corresponding Bethe ansatz results for $U rightarrow infty$, showing an excellent agreement once $E_d$ is renormalized by a constant Haldane shift. For $U < 3 Delta$ a simple perturbative approach in $U$ agrees very well with the other methods. The conductance decreases with applied magnetic field for dot occupancies $n_d sim 1$ and increases for $n_d sim 0.5$ or $n_d sim 1.5$ regardless of the value of $U$. We also relate the energy scale for the magnetic-field dependence of the conductance with the width of low energy peak in the spectral density of the dot.
We analyze the electronic transport through a quantum dot that contains a magnetic impurity. The coherent transport of electrons is governed by the quantum confinement inside the dot, but is also influenced by the exchange interaction with the impuri
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant
We consider an impurity with a spin degree of freedom coupled to a finite reservoir of non-interacting electrons, a system which may be realized by either a true impurity in a metallic nano-particle or a small quantum dot coupled to a large one. We s
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or
We analyze the equilibrium and non-equilibrium frequency-dependent spin current noise and spin conductance through a quantum dot in the local moment regime. Spin current correlations are shown to behave markedly differently from charge correlations: