ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling conflicting approaches for the tunneling time delay in strong field ionization

197   0   0.0 ( 0 )
 نشر من قبل Karen Hatsagortsyan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock experimental results were controversially discussed, because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The method of semiclassical propagation matched with the tunneled wavefunction, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the origin of the tunneling time delay as well as to confirm it with the backpropagation method being most known for predicting vanishing tunneling time.



قيم البحث

اقرأ أيضاً

Recent attoclock experiments using the attsecond angular streaking technique enabled the measurement of the tunneling time delay during laser induced strong field ionization. Theoretically the tunneling time delay is commonly modelled by the Wigner t ime delay concept which is derived from the derivative of the electron wave function phase with respect to energy. Here, we present an alternative method for the calculation of the Wigner time delay by using the fixed energy propagator. The developed formalism is applied to the nonrelativistic as well as to the relativistic regime of the tunnel-ionization process from a zero-range potential, where in the latter regime the propagator can be given by means of the proper-time method.
An improved formula is proposed for field ionization rate covering tunnel and barrier suppression regime. In contrast to the previous formula obtained recently in [I. Yu. Kostyukov and A. A. Golovanov, Phys. Rev. A 98, 043407 (2018)], it more accurat ely describes the transitional regime (between the tunnel regime and the barrier suppression regime). In the proposed approximation, the rate is mainly governed by two parameters: by the atom ionization potentials and by the external electric field, which makes it perfectly suitable for particle-in-cell (PIC) codes dedicated to modeling of intense laser-matter interactions.
The problem of time delay in tunneling ionization is revisited. The origin of time delay at the tunnel exit is analysed, underlining the two faces of the concept of the tunnelling time delay: the time delay around the tunnel exit and the asymptotic t ime delay at a detector. We show that the former time delay, in the sense of a delay in the peak of the wavefunction, exists as a matter of principle and arises due to the sub-barrier interference of the reflected and transmitted components of the tunneling electronic wavepacket. We exemplify this by describing the tunnelling ionization of an electron bound by a short-range potential within the strong field approximation in a deep tunnelling regime. If sub-barrier reflections are extracted from this wavefunction, then the time delay of the peak is shown to vanish. Thus, we assert that the disturbance of the tunnelling wavepacket by the reflection from the surface of the barrier causes a time delay in the neighbourhood of the tunnel exit.
A new pathway of strong laser field induced ionization of an atom is identified which is based on recollisions under the tunneling barrier. With an amended strong field approximation, the interference of the direct and the under-the-barrier recollidi ng quantum orbits are shown to induce a measurable shift of the peak of the photoelectron momentum distribution. The scaling of the momentum shift is derived relating the momentum shift to the tunneling delay time according to the Wigner concept. This allows to extend the Wigner concept for the quasistatic tunneling time delay into the nonadiabatic domain. The obtained corrections to photoelectron momentum distributions are also relevant for state-of-the-art accuracy of strong field photoelectron spectrograms in general.
When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_{gamma}=E_{gamma}/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ion ization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are very challenging due to the extremely small photon momentum ($~10^{-4}$ a.u.) and their precision has been too limited, so far, to ultimately resolve the debate. Here, by utilizing a novel experimental approach of two counter-propagating laser pulses, we present a detailed study on the effects of the photon momentum in strong-field ionization. The high precision and self-referencing of the method allows to unambiguously demonstrate the action of the lights magnetic field on the electron while it is under the tunnel barrier, confirming theoretical predictions, disproving others. Our results deepen the understanding of, for example, molecular imaging and time-resolved photoelectron holography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا