ترغب بنشر مسار تعليمي؟ اضغط هنا

Delay Times for Symmetrized and Antisymmetrized Quantum Tunneling Configurations

113   0   0.0 ( 0 )
 نشر من قبل Alex Bernardini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transit times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Considering two identical particles symmetrically impinging on a one-dimensional barrier, we demonstrate that the phase time and the dwell time give connected results where, however, the exact position of the scattered particles is explicitly determined by the phase time (group delay). For the antisymmetrized wave function configuration, an unusual effect of {em accelerated} transmission is clearly identified in a simultaneous tunneling of two identical fermions.



قيم البحث

اقرأ أيضاً

110 - Alex E. Bernardini 2008
We study the tunneling zone solutions of a one-dimensional electrostatic potential for the relativistic (Dirac to Klein-Gordon) wave equation when the incoming wave packet exhibits the possibility of being almost totally transmitted through the barri er. The transmission probabilities, the phase times and the dwell times for the proposed relativistic dynamics are obtained and the conditions for the occurrence of accelerated tunneling transmission are all quantified. We show that, in some limiting cases, the analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) tunneling times are all overcome. Lessons concerning the phenomenology of the relativistic tunneling suggest revealing insights into condensed-matter experiments using electrostatic barriers for which the accelerated tunneling effect can be observed.
185 - Alex E. Bernardini 2008
The general and explicit relation between the phase time and the dwell time for quantum tunneling of a relativistically propagating particle is investigated and quantified. In analogy with previously obtained non-relativistic results, it is shown tha t the group delay can be described in terms of the dwell time and a self-interference delay. Lessons concerning the phenomenology of the relativistic tunneling are drawn.
We consider the time delay of massive, non-relativistic, one-dimensional particles due to a tunneling potential. In this setting the well-known Hartman effect asserts that often the sub-ensemble of particles going through the tunnel seems to cross th e tunnel region instantaneously. An obstacle to the utilization of this effect for getting faster signals is the exponential damping by the tunnel, so there seems to be a trade-off between speedup and intensity. In this paper we prove that this trade-off is never in favor of faster signals: the probability for a signal to reach its destination before some deadline is always reduced by the tunnel, for arbitrary incoming states, arbitrary positive and compactly supported tunnel potentials, and arbitrary detectors. More specifically, we show this for several different ways to define ``the same incoming state and the same detector when comparing the settings with and without tunnel potential. The arrival time measurements are expressed in the time-covariant approach, but we also allow the detection to be a localization measurement at a later time.
By an inductive reasoning, and based on recent results of the joint moments of proper delay times of open chaotic systems for ideal coupling to leads, we obtain a general expression for the distribution of the partial delay times for an arbitrary num ber of channels and any symmetry. This distribution was not completely known for all symmetry classes. Our theoretical distribution is verified by random matrix theory simulations of ballistic chaotic cavities.
196 - Alex E. Bernardini 2008
The stationary phase method is often employed for computing tunneling {em phase} times of analytically-continuous {em gaussian} or infinite-bandwidth step pulses which collide with a potential barrier. The indiscriminate utilization of this method wi thout considering the barrier boundary effects leads to some misconceptions in the interpretation of the phase times. After reexamining the above barrier diffusion problem where we notice the wave packet collision necessarily leads to the possibility of multiple reflected and transmitted wave packets, we study the phase times for tunneling/reflecting particles in a framework where an idea of multiple wave packet decomposition is recovered. To partially overcome the analytical incongruities which rise up when tunneling phase time expressions are obtained, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a one dimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا