ترغب بنشر مسار تعليمي؟ اضغط هنا

A Single Charged Quantum Dot in a Strong Optical Field: Absorption, Gain, and the AC Stark Effect

151   0   0.0 ( 0 )
 نشر من قبل Xiaodong Xu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a singly-charged quantum dot under a strong optical driving field by probing the system with a weak optical field. When the driving field is detuned from the trion transition, the probe absorption spectrum is shifted from the trion resonance as a consequence of the dynamic Stark effect. Simultaneously, a gain sideband is created, resulting from the coherent energy transfer between the optical fields through the quantum dot nonlinearity. As the pump detuning is moved from red to blue, we map out the anticrossing of these two spectral lines. The optical Bloch equations for a stationary two-level atom can be used to describe the numerous spectral features seen in this nano solid state system.



قيم البحث

اقرأ أيضاً

A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged qua ntum dot, shifting one spin manifold but not the other. An additional shift occurs due to the Overhauser field of the nuclear spins, which are pumped into a partially polarized state. This mechanism offers a potentially rapid, reversible, and coherent control of the energy structure and polarization selection rules of a charged quantum dot.
We report on the observation of spin dependent optically dressed states and optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are opti cally dressed by a strong laser field and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power, polarization and detuning dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates a complete optical resonant control of the exciton-Mn system.
We propose a method to read-out the spin-state of an electron in a quantum dot in a Voigt geometry magnetic field using cycling transitions induced by the AC Stark effect. We show that cycling transitions can be made possible by a red-detuned, circul arly-polarized laser, which modifies the spin eigenstates and polarization selection rules via the AC Stark effect. A Floquet-Liouville supermatrix approach is used to calculate the time-evolution of the density matrix under the experimental conditions of a spin read-out operation. With an overall detection efficiency of 2.5%, the read-out is a single-shot measurement with a fidelity of 76.2%.
When a detuned and strong laser pulse acts on an optical transition, a Stark shift of the corresponding energies occurs. We analyze how this optical Stark effect can be used to prepare and control the dark exciton occupation in a semiconductor quantu m dot. The coupling between the bright and dark exciton states is facilitated by an external magnetic field. Using sequences of laser pulses, we show how the dark exciton and different superposition states can be prepared. We give simple analytic formulas, which yield a good estimate for optimal preparation parameters. The preparation scheme is quite robust against the influence of acoustic phonons. We further discuss the experimental feasibility of the used Stark pulses. Giving a clear physical picture our results will stimulate the usage of dark excitons in schemes to generate photons from quantum dots.
We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Incre asing or decreasing the magnetic field leads to electronic spin-flip transitions and increasing spin polarization. The increasing total spin of electrons appears as a manifold of closely spaced emission lines, while spin flips appear as discontinuities of emission lines. The number of multiplets and discontinuities measures the number of carriers and their spin. We present a complete analysis of the emission spectrum of a single quantum dot with N=4 electrons and a single hole, calculated and measured in magnetic fields up to 23 Tesla.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا