ﻻ يوجد ملخص باللغة العربية
When a detuned and strong laser pulse acts on an optical transition, a Stark shift of the corresponding energies occurs. We analyze how this optical Stark effect can be used to prepare and control the dark exciton occupation in a semiconductor quantum dot. The coupling between the bright and dark exciton states is facilitated by an external magnetic field. Using sequences of laser pulses, we show how the dark exciton and different superposition states can be prepared. We give simple analytic formulas, which yield a good estimate for optimal preparation parameters. The preparation scheme is quite robust against the influence of acoustic phonons. We further discuss the experimental feasibility of the used Stark pulses. Giving a clear physical picture our results will stimulate the usage of dark excitons in schemes to generate photons from quantum dots.
Several important proposals to use semiconductor quantum dots in quantum information technology rely on the control of the dark exciton ground states, such as dark exciton based qubits with a $mu$s life time. In this paper, we present an efficient wa
We investigate a singly-charged quantum dot under a strong optical driving field by probing the system with a weak optical field. When the driving field is detuned from the trion transition, the probe absorption spectrum is shifted from the trion res
The magnetic-field dependence of the energy spectrum, wave function, binding energy and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) are obtained within the configuration interaction (CI) method. We predict
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent loss
We demonstrate coherent optical control of a single hole spin confined to an InAs/GaAs quantum dot. A superposition of hole spin states is created by fast (10-100 ps) dissociation of a spin-polarized electron-hole pair. Full control of the hole-spin