ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Spin Read-out Method for a Quantum Dot using the AC Stark Effect

173   0   0.0 ( 0 )
 نشر من قبل Edward Flagg
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to read-out the spin-state of an electron in a quantum dot in a Voigt geometry magnetic field using cycling transitions induced by the AC Stark effect. We show that cycling transitions can be made possible by a red-detuned, circularly-polarized laser, which modifies the spin eigenstates and polarization selection rules via the AC Stark effect. A Floquet-Liouville supermatrix approach is used to calculate the time-evolution of the density matrix under the experimental conditions of a spin read-out operation. With an overall detection efficiency of 2.5%, the read-out is a single-shot measurement with a fidelity of 76.2%.

قيم البحث

اقرأ أيضاً

A strong, far-detuned laser can shift the energy levels of an optically active quantum system via the AC Stark effect. We demonstrate that the polarization of the laser results in a spin-selective modification to the energy structure of a charged qua ntum dot, shifting one spin manifold but not the other. An additional shift occurs due to the Overhauser field of the nuclear spins, which are pumped into a partially polarized state. This mechanism offers a potentially rapid, reversible, and coherent control of the energy structure and polarization selection rules of a charged quantum dot.
156 - A. Shabaev 2003
We describe theoretically the resonant optical excitation of a trion with circularly polarized light and discuss how this trion permits the read-out of a single electron spin through a recycling transition. Optical pumping through combination of circ ularly polarized optical $pi$--pulses with permanent or $pi$-- pulsed transverse magnetic fields suggests feasible protocols for spin initialization.
91 - C.Y. Hu , J.G. Rarity 2010
We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequentia l detection of two photons, and is finished after the spin measurement. The spin-cavity unit works as a complete Bell-state analyzer with a built-in spin memory allowing loss-resistant repeater operation. This device can work in both the weak coupling and the strong coupling regime, but high efficiencies and high fidelities are only achievable when the side leakage and cavity loss is low. We assess the feasibility of this device, and show it can be implemented with current technology. We also propose a spin manipulation method using single photons, which could be used to preserve the spin coherence via spin echo techniques.
We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spi n initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond GHz.
We show that two initially non-resonant quantum dots may be brought into resonance by the application of a single detuned laser. This allows for control of the inter-dot interactions and the generation of highly entangled excitonic states on the pico second timescale. Along with arbitrary single qubit manipulations, this system would be sufficient for the demonstration of a prototype excitonic quantum computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا