ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field

135   0   0.0 ( 0 )
 نشر من قبل Marek Korkusinski
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Increasing or decreasing the magnetic field leads to electronic spin-flip transitions and increasing spin polarization. The increasing total spin of electrons appears as a manifold of closely spaced emission lines, while spin flips appear as discontinuities of emission lines. The number of multiplets and discontinuities measures the number of carriers and their spin. We present a complete analysis of the emission spectrum of a single quantum dot with N=4 electrons and a single hole, calculated and measured in magnetic fields up to 23 Tesla.



قيم البحث

اقرأ أيضاً

218 - D. Heiss , V. Jovanov , M. Caesar 2009
We report the investigation of a single quantum dot charge storage device. The device allows selective optical charging of a single dot with electrons, storage of these charges over timescales much longer than microseconds and reliable optical readou t of the charge occupancy using a time gated photoluminescence technique. This device enables us to directly investigate the electric field dependent tunneling escape dynamics of electrons at high electric fields over timescales up to 4 us. The results demonstrate that such structures and measurement techniques can be used to investigate charge and spin dynamics in single quantum dots over microsecond timescales.
We have fabricated a lateral double barrier magnetic tunnel junction (MTJ) which consists of a single self-assembled InAs quantum dot (QD) with ferromagnetic Co leads. The MTJ shows clear hysteretic tunnel magnetoresistance (TMR) effect, which is evi dence for spin transport through a single semiconductor QD. The TMR ratio and the curve shapes are varied by changing the gate voltage.
73 - H. Sasakura , S. Adachi , S. Muto 2006
We have demonstrated experimentally the manipulation of exciton and nuclear spins in a single self-assembled In$_{0.75}$Al$_{0.25}$As/Al$_{0.3}$Ga$_{0.7}$As quantum dot. The oscillation of exciton and nuclear spin polarizations were clearly observed. The switching of the emissions in Zeeman split pair indicates that the exciton pair with opposite spins was created coherently via the continuum states and that we can control the electron and nuclear spin polarizations only by changing the delay time of the cross-linearly-polarized pulses. These suggest the high potentiality of electron and nuclear spin manipulation in a single QD via the continuum state.
The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 pm 0.1 ns are characterized via se veral different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.
We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than th e corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا