ترغب بنشر مسار تعليمي؟ اضغط هنا

Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet

201   0   0.0 ( 0 )
 نشر من قبل Rafael Jaramillo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.

قيم البحث

اقرأ أيضاً

Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wavevector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction.
The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline PCMOfiftwo a lockin to $q/a^*=0.5$ in a sample with $x>0.5$ has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.
Itinerant and local moment magnetism have substantively different origins, and require distinct theoretical treatment. A unified theory of magnetism has long been sought after, and remains elusive, mainly due to the limited number of known itinerant magnetic systems. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn_2 and Sc_3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet (IAFM) with a spin density wave (SDW) ground state, its 3d character has been deemed crucial to it being magnetic. Here we report the discovery of the first IAFM compound with no magnetic constituents, TiAu. Antiferromagnetic order occurs below a Neel temperature T_N ~ 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This new IAFM challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing long sought-after insights into the effects of spin fluctuations in itinerant electron systems.
Undoped iron superconductors accommodate $n=6$ electrons in five d-orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole-doping, as the electronic filling approaches half-filling with $n=5$ electr ons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with $n<5$ electrons. By means of ab-initio, slave spin and multi-orbital RPA calculations we analyse the strength of the correlations and the superconducting and magnetic instabilities in these systems with main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, being $(pi,pi)$ antiferromagnetism and nodal d-wave pairing the most plausible magnetic and superconducting instabilities, respectively.
Stimulated by recent works highlighting the indispensable role of Coulomb interactions in the formation of helical chains and chiral electronic order in the elemental chalcogens, we explore the p-orbital Hubbard model on a one-dimensional helical cha in. By solving it in the Hartree approximation we find a stable ground state with a period-three orbital density wave. We establish that the precise form of the emerging order strongly depends on the Hubbard interaction strength. In the strong coupling limit, the Coulomb interactions support an orbital density wave that is qualitatively different from that in the weak-coupling regime. We identify the phase transition separating these two orbital ordered phases, and show that realistic values for the inter-orbital Coulomb repulsion in elemental chalcogens place them in the weak coupling phase, in agreement with observations of the order in the elemental chalcogens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا