ترغب بنشر مسار تعليمي؟ اضغط هنا

Very weak electron-phonon coupling and strong strain coupling in manganites

180   0   0.0 ( 0 )
 نشر من قبل Susan Cox
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline PCMOfiftwo a lockin to $q/a^*=0.5$ in a sample with $x>0.5$ has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.



قيم البحث

اقرأ أيضاً

We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ after resonant excitation of a high-frequency infrared-active lat tice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
The lattice dynamics in Sr$_2$RuO$_4$ has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr$_2$RuO$_4$ exhibit a normal dispersion in contrast to all electronically doped per ovskites studied so far. Evidence for strong electron phonon coupling is found for c-polarized phonons suggesting a close connection with the anomalous c-axis charge transport in Sr$_2$RuO$_4$.
Multiferroic rare earth manganites attracted recent attention because of the coexistence of different types of magnetic and ferroelectric orders resulting in complex phase diagrams and a wealth of physical phenomena. The coupling and mutual interfere nce of the different orders and the large magnetoelectric effect observed in several compounds are of fundamental interest and bear the potential for future applications in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. The physical mechanisms of the magnetoelectric effect and the origin of ferroelectric order at magnetic transitions have yet to be explored. We discuss multiferroic phenomena in the hexagonal HoMnO3 and show that the strong magneto-dielectric coupling is intimately related to the lattice strain induced by unusually large spin-phonon correlations.
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe$_2$. We observe a complete softening of a transverse optic phonon at the L point, i.e. q = (0.5, 0, 0.5), at T ~ T_{CDW}. Renormal ized phonon energies are observed over a large wavevector range $(0.3, 0, 0.5) le mathbf{q} le (0.5, 0, 0.5)$. Detailed ab-initio calculations for the electronic and lattice dynamical properties of TiSe2 are in quantitative agreement with experimental frequencies for the phonon branch involving the soft mode. The observed broad range of renormalized phonon frequencies is directly related to a broad peak in the electronic susceptibility stabilizing the charge-density-wave ordered state. Our analysis demonstrates that a conventional electron-phonon coupling mechanism can explain a structural instability and the charge-density-wave order in TiSe_2 although other mechanisms might further boost the transition temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا