ترغب بنشر مسار تعليمي؟ اضغط هنا

Chalcogenic orbital density waves in weak and strong coupling limit

94   0   0.0 ( 0 )
 نشر من قبل Adam Klosinski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stimulated by recent works highlighting the indispensable role of Coulomb interactions in the formation of helical chains and chiral electronic order in the elemental chalcogens, we explore the p-orbital Hubbard model on a one-dimensional helical chain. By solving it in the Hartree approximation we find a stable ground state with a period-three orbital density wave. We establish that the precise form of the emerging order strongly depends on the Hubbard interaction strength. In the strong coupling limit, the Coulomb interactions support an orbital density wave that is qualitatively different from that in the weak-coupling regime. We identify the phase transition separating these two orbital ordered phases, and show that realistic values for the inter-orbital Coulomb repulsion in elemental chalcogens place them in the weak coupling phase, in agreement with observations of the order in the elemental chalcogens.

قيم البحث

اقرأ أيضاً

A pair-density-wave (PDW) is a novel superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a den sity-matrix renormalization group (DMRG) study of an effective $t$-$J$-$V$ model, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four- and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around the $K$ and $K^prime$ points in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central charge $capprox 1$ are consistent with an unusual realization of a Luther-Emery liquid.
The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline PCMOfiftwo a lockin to $q/a^*=0.5$ in a sample with $x>0.5$ has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.
Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are con fined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. For the prototypical material 1T-TaS2 we not only show that the CDW within the two-dimensional TaS2-layers involves previously unidentified orbital textures of great complexity. We also demonstrate that two metastable stackings of the orbitally ordered layers allow to manipulate salient features of the electronic structure. Indeed, these orbital effects enable to switch the properties of 1T-TaS2 nanostructures from metallic to semiconducting with technologically pertinent gaps of the order of 200 meV. This new type of orbitronics is especially relevant for the ongoing development of novel, miniaturized and ultra-fast devices based on layered transition metal dichalcogenides.
We analyze the quantum phase diagram of the Holstein-Hubbard model using an asymptotically exact strong-coupling expansion. We find all sorts of interesting phases including a pair-density wave (PDW), a charge 4e (and even a charge 6e) superconductor , regimes of phase separation, and a variety of distinct charge-density-wave (CDW), spin-density-wave (SDW) and superconducting regimes. We chart the crossovers that occur as a function of the degree of retardation, i.e. the ratio of characteristic phonon frequency to the strength of interactions.
77 - S.Brazovski , N. Kirova 1999
The rich order parameter of Spin Density Waves allows for an unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of the staggered magnetization. It becomes energetically preferable to ordinary disloc ation due to enhanced Coulomb interactions in the semiconducting regime. Generation of these objects changes the narrow band noise frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا