ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-Tuned Spin and Charge Ordering in an Itinerant Antiferromagnet

146   0   0.0 ( 0 )
 نشر من قبل Yejun Feng
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elemental chromium orders antiferromagnetically near room temperature, but the ordering temperature can be driven to zero by applying large pressures. We combine diamond anvil cell and synchrotron x-ray diffraction techniques to measure directly the spin and charge order in the pure metal at the approach to its quantum critical point. Both spin and charge order are suppressed exponentially with pressure, well beyond the region where disorder cuts off such a simple evolution, and they maintain a harmonic scaling relationship over decades in scattering intensity. By comparing the development of the order parameter with that of the magnetic wavevector, it is possible to ascribe the destruction of antiferromagnetism to the growth in electron kinetic energy relative to the underlying magnetic exchange interaction.



قيم البحث

اقرأ أيضاً

We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like an Mn(3+) ion, favoring a Jahn-Teller distortion of the surrounding oxygen atoms, while the distortion around the other is not a simple breathing mode kind. Band structure effects are found to dominate the experimental spectrum for orbital and charge ordering, providing an alternate explanation for the experimentally observed results.
Itinerant and local moment magnetism have substantively different origins, and require distinct theoretical treatment. A unified theory of magnetism has long been sought after, and remains elusive, mainly due to the limited number of known itinerant magnetic systems. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn_2 and Sc_3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet (IAFM) with a spin density wave (SDW) ground state, its 3d character has been deemed crucial to it being magnetic. Here we report the discovery of the first IAFM compound with no magnetic constituents, TiAu. Antiferromagnetic order occurs below a Neel temperature T_N ~ 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This new IAFM challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing long sought-after insights into the effects of spin fluctuations in itinerant electron systems.
96 - T. Mizokawa , D. I. Khomskii , 1999
We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO$_3$ and NdNiO$_3$. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3$d$ orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO$_3$.
The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.
We report detailed magnetization measurements on the perovskite oxide NdNiO$_3$. This system has a first order metal-insulator (M-I) transition at about 200 K which is associated with charge ordering. There is also a concurrent paramagnetic to antife rromagnetic spin ordering transition in the system. We show that the antiferromagnetic state of the nickel sublattice is spin canted. We also show that the concurrency of the charge ordering and spin ordering transitions is seen only while warming up the system from low temperature. The transitions are not concurrent while cooling the system through the M-I transition temperature. This is explained based on the fact that the charge ordering transition is first order while the spin ordering transition is continuous. In the magnetically ordered state the system exhibits ZFC-FC irreversibilities, as well as history-dependent magnetization and aging. Our analysis rules out the possibility of spin-glass or superparamagnetism and suggests that the irreversibilities originate from magnetocrystalline anisotropy and domain wall pinning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا